

22320 Foothill Blvd, Suite 600 Hayward, CA 94541 Phone – 415 619 6000 Fax – 415 500 9583 Email – <u>hemal@zenithengineers.com</u> www.zenithengineers.com

1	Summary	2 thru 4
2	Signature / Stamp Page	5 thru 7
3	Engineering Drawings	8 thru 20
4	Engineering Calculations – RFX238P (Post Without stiffener)	21 thru 24
5	Engineering Calculations – RFX238P+RFXPS (Post With stiffener)	24 thru 25
6	Engineering Calculations – Base Connections for RFX238P	26
7	Engineering Calculations – Concrete Anchor Connections for RFX238P	27 thru 90
8	Engineering Calculations – Wood Anchor Connections for RFX238P	91 thru 96

Page 1 of 96

Page 2 of 96 22320 Foothill Blvd, Suite 600 Hayward, CA 94541 Phone – 415 619 6000 Fax – 415 500 9583 Email – <u>hemal@zenithengineers.com</u> www.zenithengineers.com

RFX aluminum guard rail system utilizes aluminum extrusions with wire rope (stainless steel cable) and glass infill to construct building guards and rails for decks, balconies, stairs, fences and similar locations. The system is intended for interior and exterior weather exposed applications and is suitable for use in most natural environments. This system may be used for residential, commercial and industrial applications. It is an engineered system designed for the following criteria:

RFX Rail System Stainless Steel Cable:

The design loading conditions are: (Railing is designed for max speed of 160mph) On Top Rail:

Concentrated load = 200 lbs any direction, any location

Uniform load = 50 plf, any perpendicular to rail

For installations compliant with the IRC only the 200# top rail load is applicable.

On In-fill Panels:

Concentrated load = 50# on one sf.

Distributed load = 25 psf on area of in-fill, including spaces

Wind load will not control and doesn't impact design.

Refer to IBC Section 1607.7.1 for loading.

Minimum Required Wood Type:

Wood Shall be Douglas-Fir or Better

Anchor Material Specifications:

DIN EN ISO 4042 (For Epoxy Anchors) Stainless Steel (For Lag Screws)

Railing Post Material Specifications:

Post Shall be Aluminum 6063 – T5 and shall conform to Aluminum Design Manual.

22320 Foothill Blvd, Suite 600 Hayward, CA 94541 Phone – 415 619 6000 Fax – 415 500 9583 Email – <u>hemal@zenithengineers.com</u> www.zenithengineers.com

RFX Rail System Glass In-fill Panels:

The design loading conditions are: (Railing is designed for max speed of 110mph)

On Top Rail:

Concentrated load = 200 lbs any direction, any location

Uniform load = 50 plf, any perpendicular to rail

For installations compliant with the IRC only the 200# top rail load is applicable.

On In-fill Panels:

Concentrated load = 50# on one sf.

Distributed load = 25 psf on area of in-fill, including spaces

Wind load will apply in glass in-fill system.

Refer to IBC Section 1607.7.1 for loading.

Minimum Required Wood Type:

Wood Shall be Douglas-Fir or Better

Anchor Material Specifications:

DIN EN ISO 4042 (For Epoxy Anchors)

Stainless Steel (For Lag Screws)

Railing Post Material Specifications:

Railing Post Shall be Aluminum 6063 – T5 and shall conform to Aluminum Design Manual.

The RFX system will meet all applicable requirements of the 2006, 2009, 2012, 2015 and 2018 International Building Codes and International Residential Codes, CBC 2019 and state building codes based on these versions of the IBC, and 2005 and 2010 Aluminum Design Manuals. Wood components and anchorage to wood are designed in accordance with the 2018 National Design Specification for Wood Construction.

Page 3 of 96

22320 Foothill Blvd, Suite 600 Hayward, CA 94541 Phone – 415 619 6000 Fax – 415 500 9583 Email – <u>hemal@zenithengineers.com</u> www.zenithengineers.com

Typical Installations:

Surface mounted with base plates:

Residential Applications:

Rail Height 36" or 42" above finish floor.

Steel Cable: Standard Post spacing 5' on center maximum all mounting methods (one, or two-story house only) except as noted below.

<u>Glass In-fill Panels:</u> Standard Post spacing 4' on center maximum all mounting methods (one, or two-story house only) except as noted below.

All top rails

Commercial and Industrial Applications:

Rail Height 42" above finish floor.

Steel Cable: Standard Post spacing 5' on center maximum with stiffener for all posts.

Glass In-fill Panels: Standard Post spacing 4' on center maximum with stiffener for all posts.

All top rails

Core pocket /embedded posts:

Residential Applications:

Rail Height 36" or 42" above finish floor.

<u>Steel Cable:</u> Standard Post spacing 5' on center maximum all mounting methods (one, or two-story house only) except as noted below.

<u>Glass In-fill Panels:</u> Standard Post spacing 4' on center maximum all mounting methods (one, or two-story house only) except as noted below.

Commercial and Industrial Applications:

Rail Height 42" above finish floor.

Steel Cable: Standard Post spacing 5' on center maximum with stiffener for all posts.

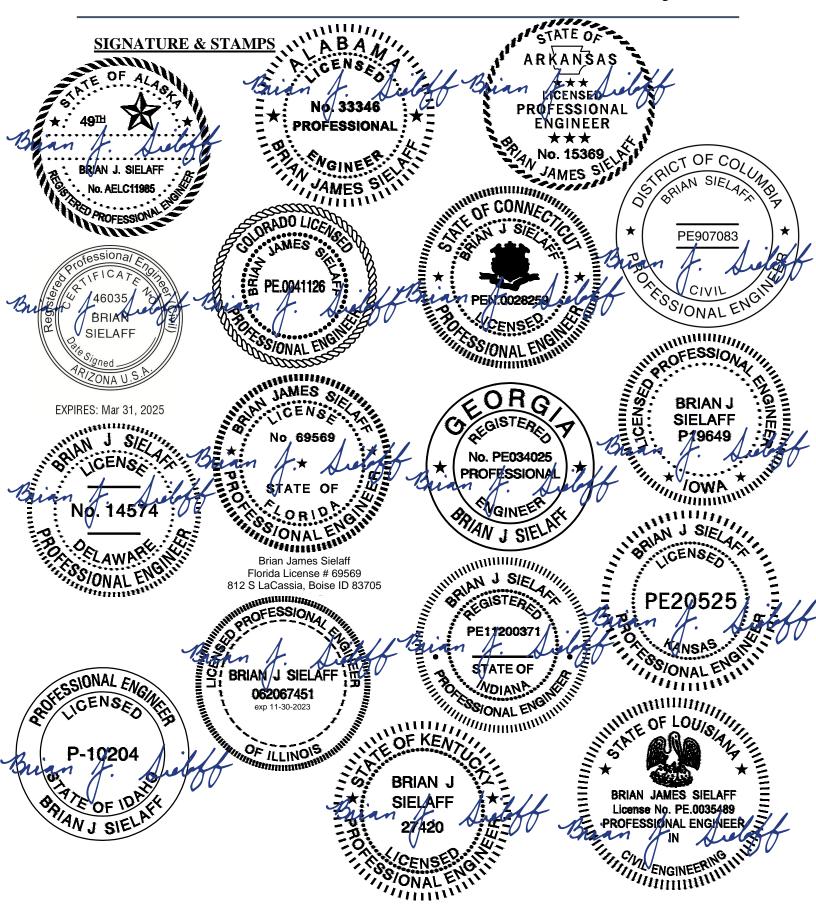
Glass In-fill Panels: Standard Post spacing 4' on center maximum with stiffener for all posts.

Note:

- 1. Post spacing RFX239P is 4' on center maximum without using stiffener for posts.
- 2. PFX1000P post may be used for 6' & 8' panels with vertical cables and bottom rail support.

Page 4 of 96

Page 5 of 96

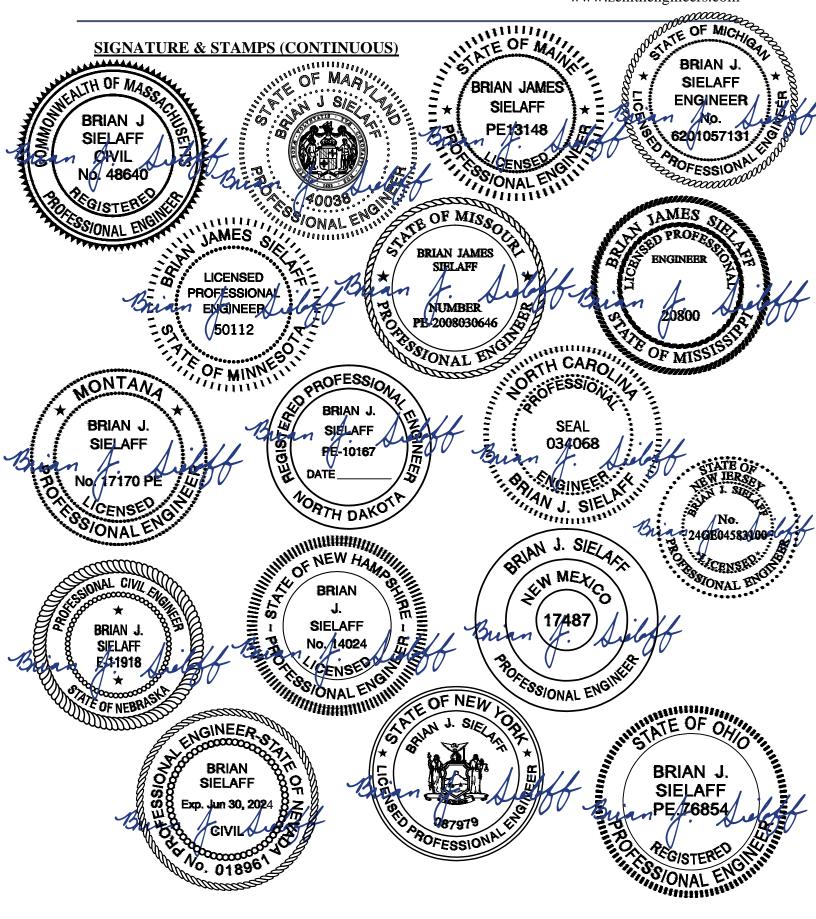

Zenith Project# 190417 CO3

ZΣN

Engineers | Architects

Construction Managers

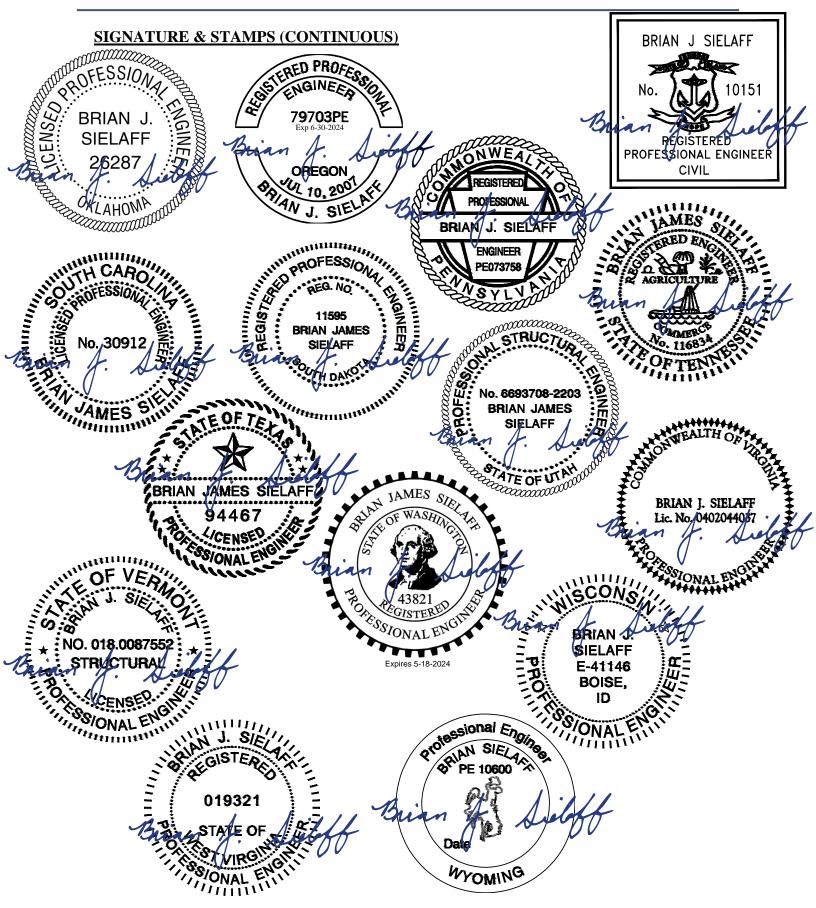
22320 Foothill Blvd, Suite 600 Hayward, CA 94541 Phone – 415 619 6000 Fax – 415 500 9583 Email – <u>hemal@zenithengineers.com</u> www.zenithengineers.com



Page 6 of 96

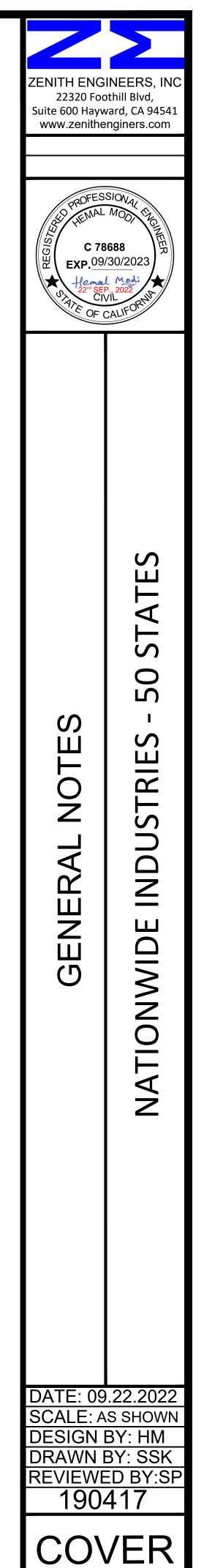
Zenith Project# 190417 CO3

22320 Foothill Blvd, Suite 600 Hayward, CA 94541 Phone – 415 619 6000 Fax – 415 500 9583 Email – <u>hemal@zenithengineers.com</u> www.zenithengineers.com

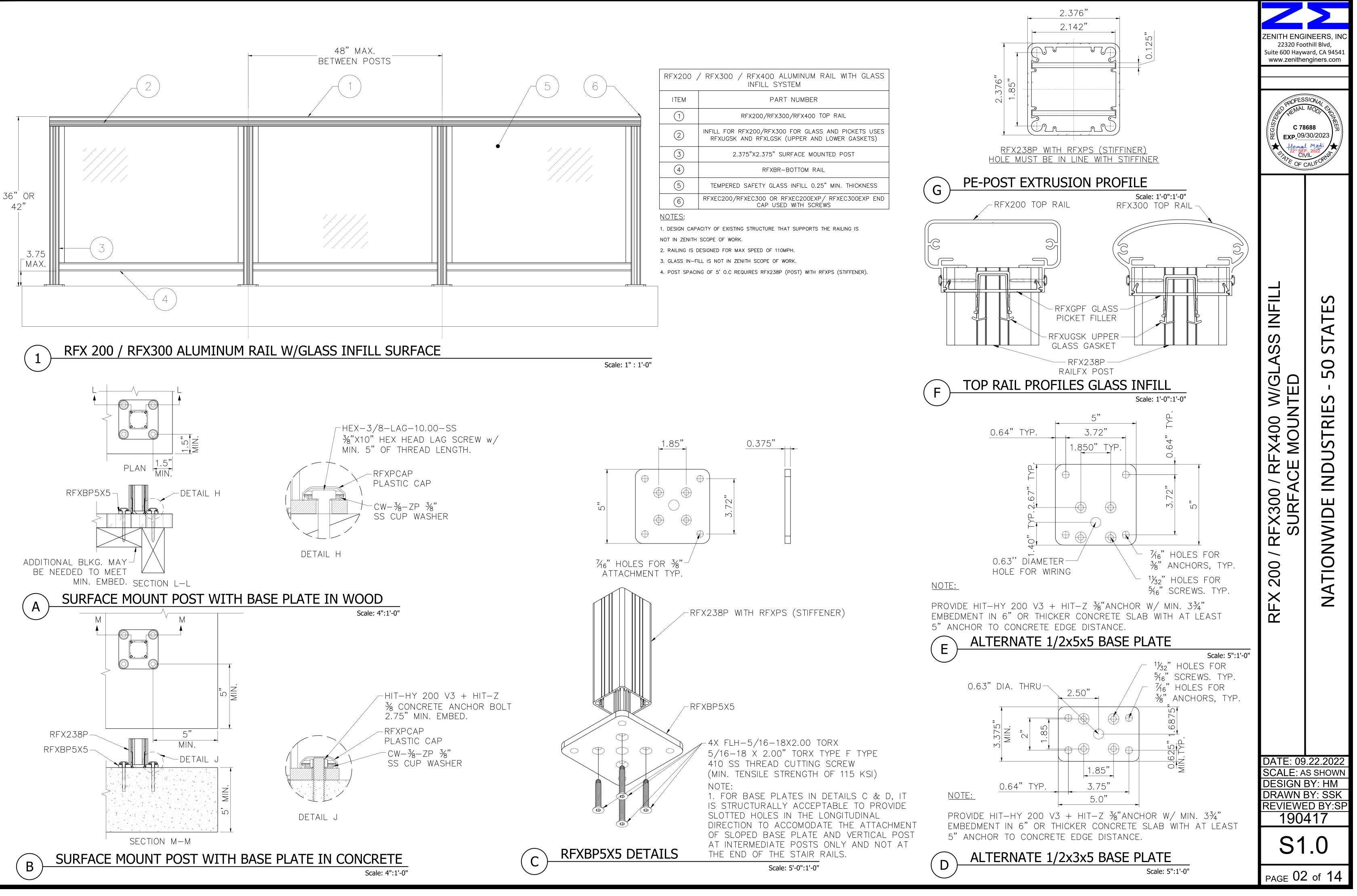


Zenith Project# 190417 CO3

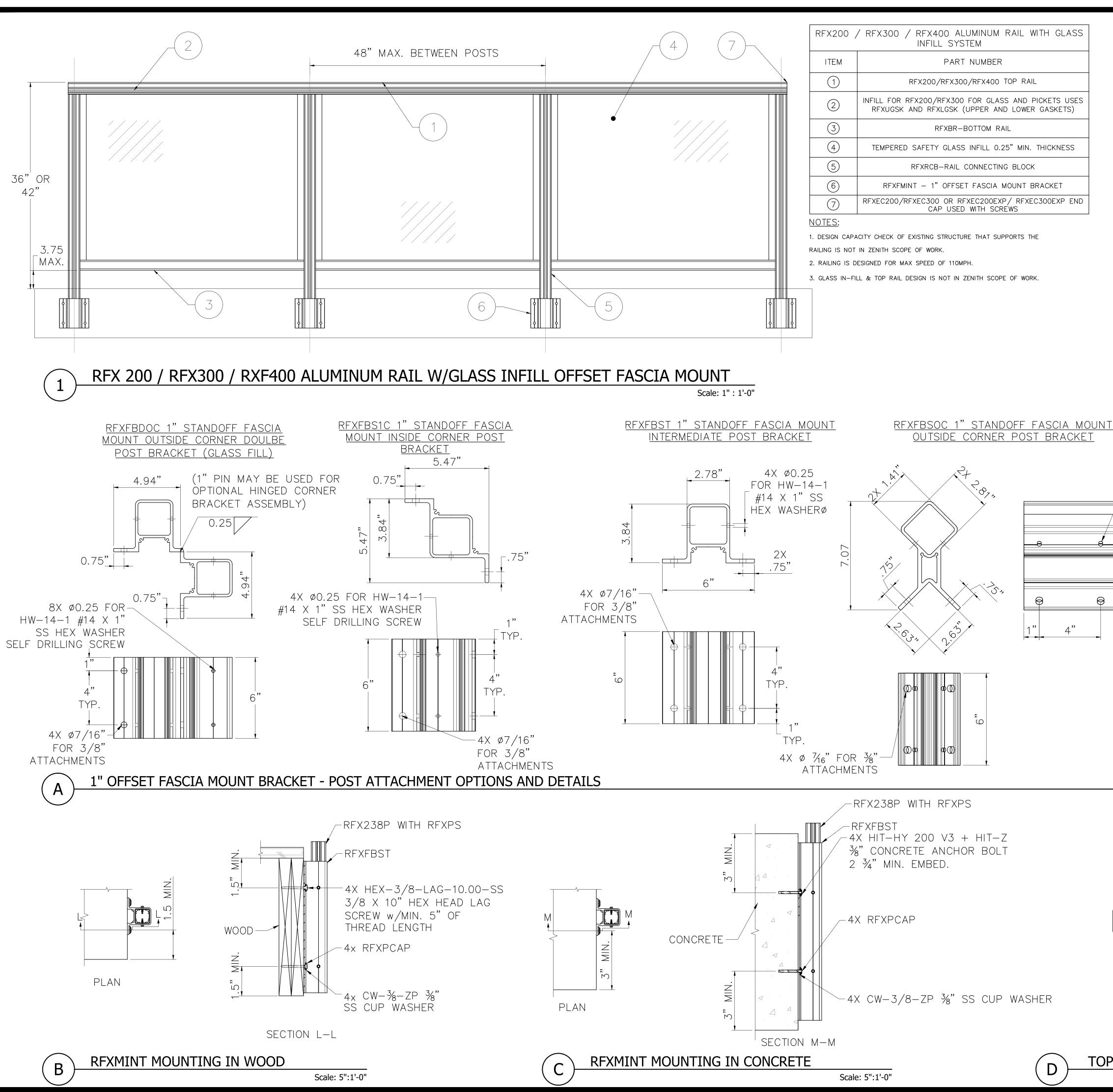
Page 7 of 96



22320 Foothill Blvd, Suite 600 Hayward, CA 94541 Phone – 415 619 6000 Fax – 415 500 9583 Email – <u>hemal@zenithengineers.com</u> www.zenithengineers.com

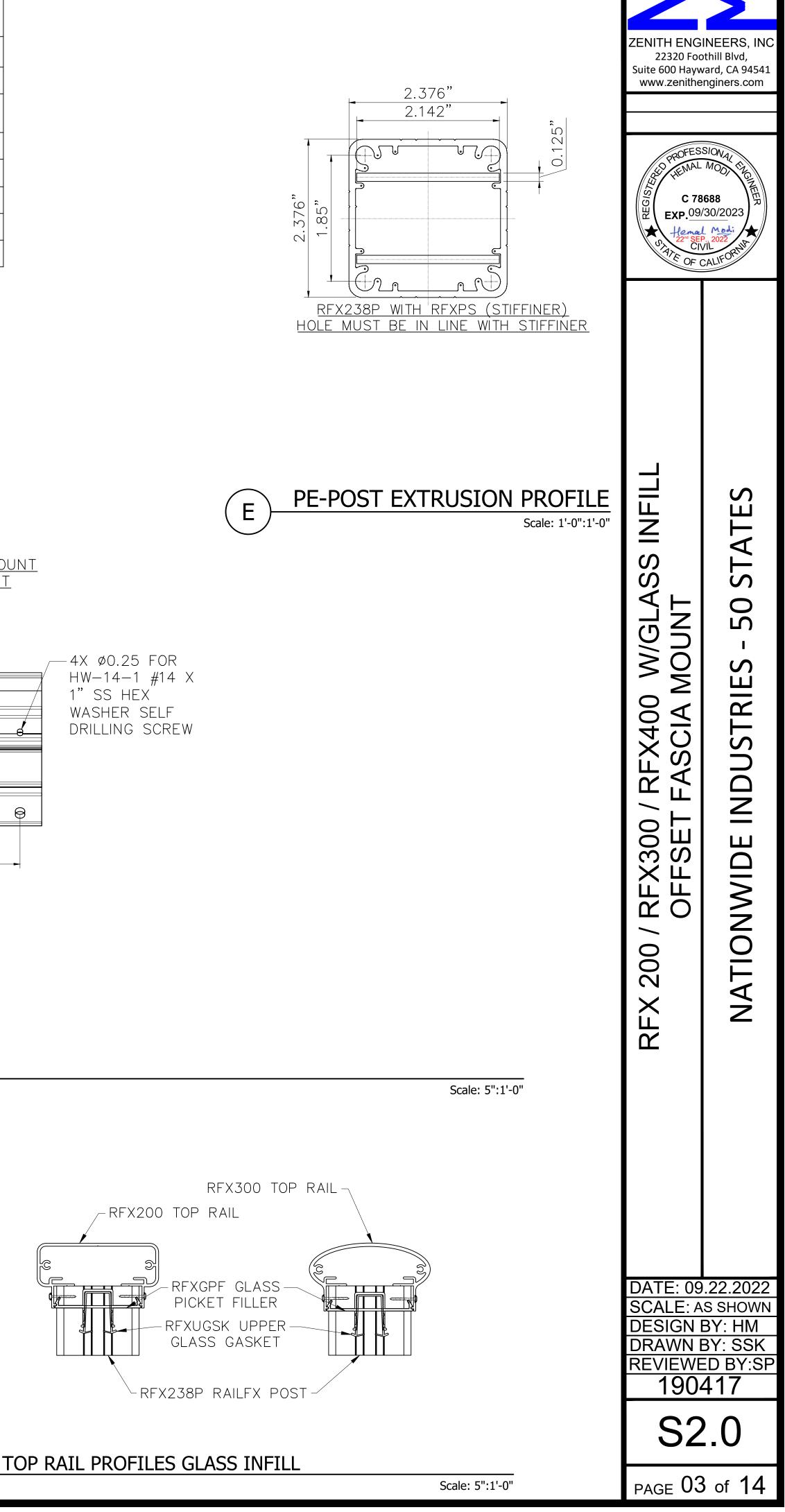


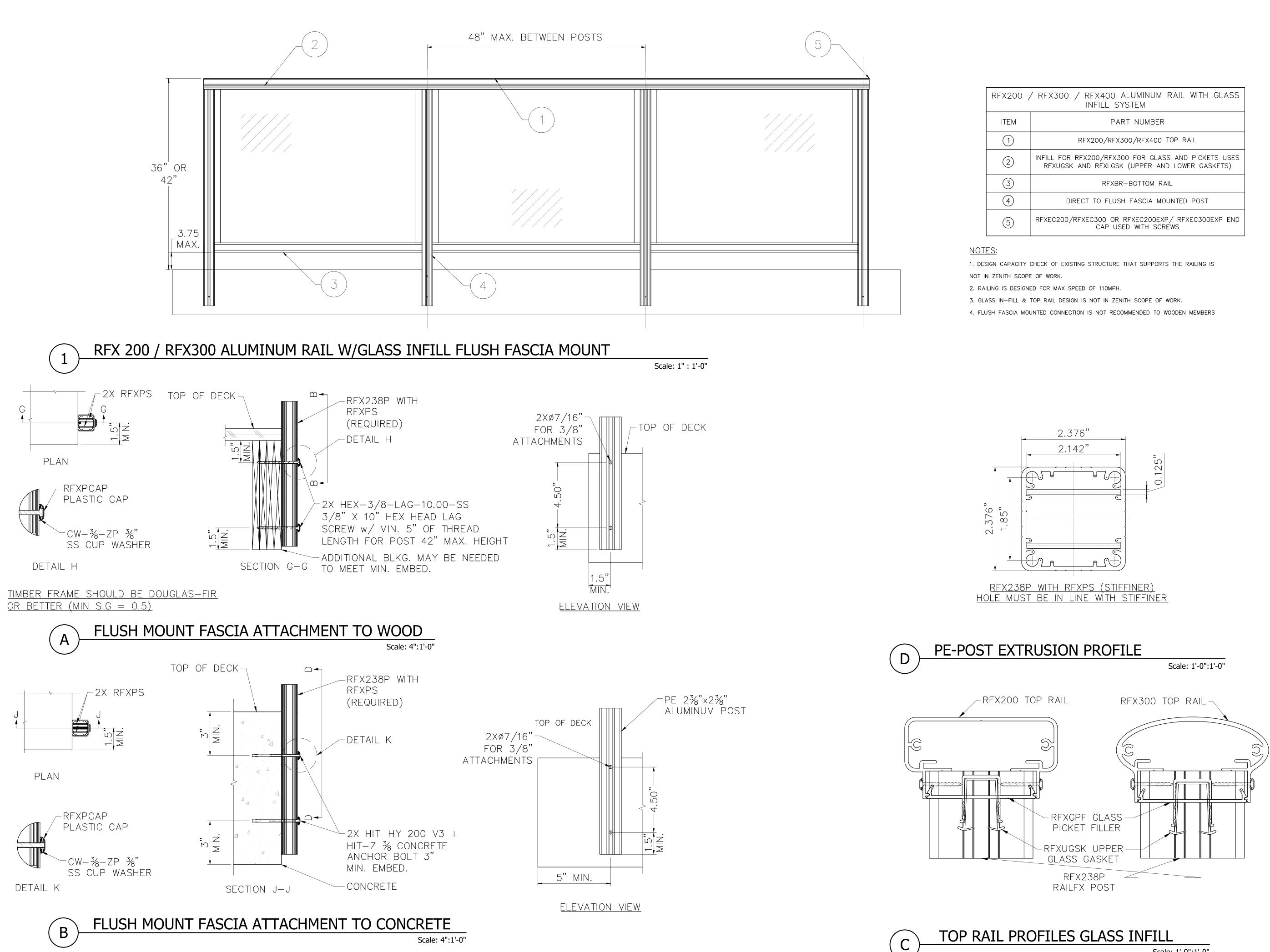
NATIONWIDE INDUSTRIES 50 STATES


	SHEET INDEX						
SHEET NO.	SHEET TITLE						
COVER	COVER						
S1.0	RFX 200 / RFX300 / RFX400 W/GLASS INFILL – SURFACE MOUNTED						
S2.0	RFX 200 / RFX300 / RFX400 W/GLASS INFIL – OFFSET FASICA MOUNTED						
S3.0	RFX 200 / RFX300 / RFX400 W/GLASS INFIL – FLUSH FASICA MOUNTED						
S4.0	RFX 200 / RFX300 / RFX400 W/GLASS INFIL – CORE MOUNTED						
S5.0	RFX 200 / RFX300 W/STAINLESS STEEL CABLE INFILL – SURFACE MOUNTED						
S6.0	RFX 200 / RFX300 W/STAINLESS STEEL CABLE INFILL – OFFSET FASICA MOUNTED						
S7.0	RFX 200 / RFX300 W/STAINLESS STEEL CABLE INFILL – FLUSH FASICA MOUNTED						
S8.0	RFX 200 / RFX300 W/STAINLESS STEEL CABLE INFILLL – CORE MOUNTED						
S9.0	RFX 100 / RFX250 W/STAINLESS STEEL CABLE INFILL – SURFACE MOUNTED						
S10.0	RFX 100 / RFX250 W/STAINLESS STEEL CABLE INFILL – OFFSET FASICA MOUNTED						
S11.0	RFX 100 / RFX250 W/STAINLESS STEEL CABLE INFILL – FLUSH FASICA MOUNTED						
S12.0	RFX 100 / RFX250 W/STAINLESS STEEL CABLE INFILL – CORE						

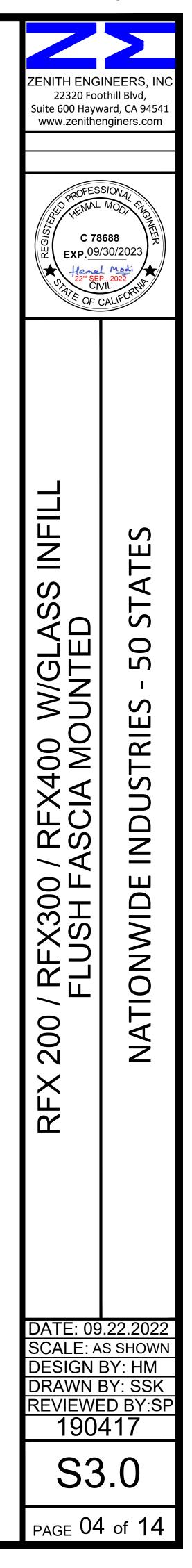
PAGE 01 of 14

Page 9 of 96

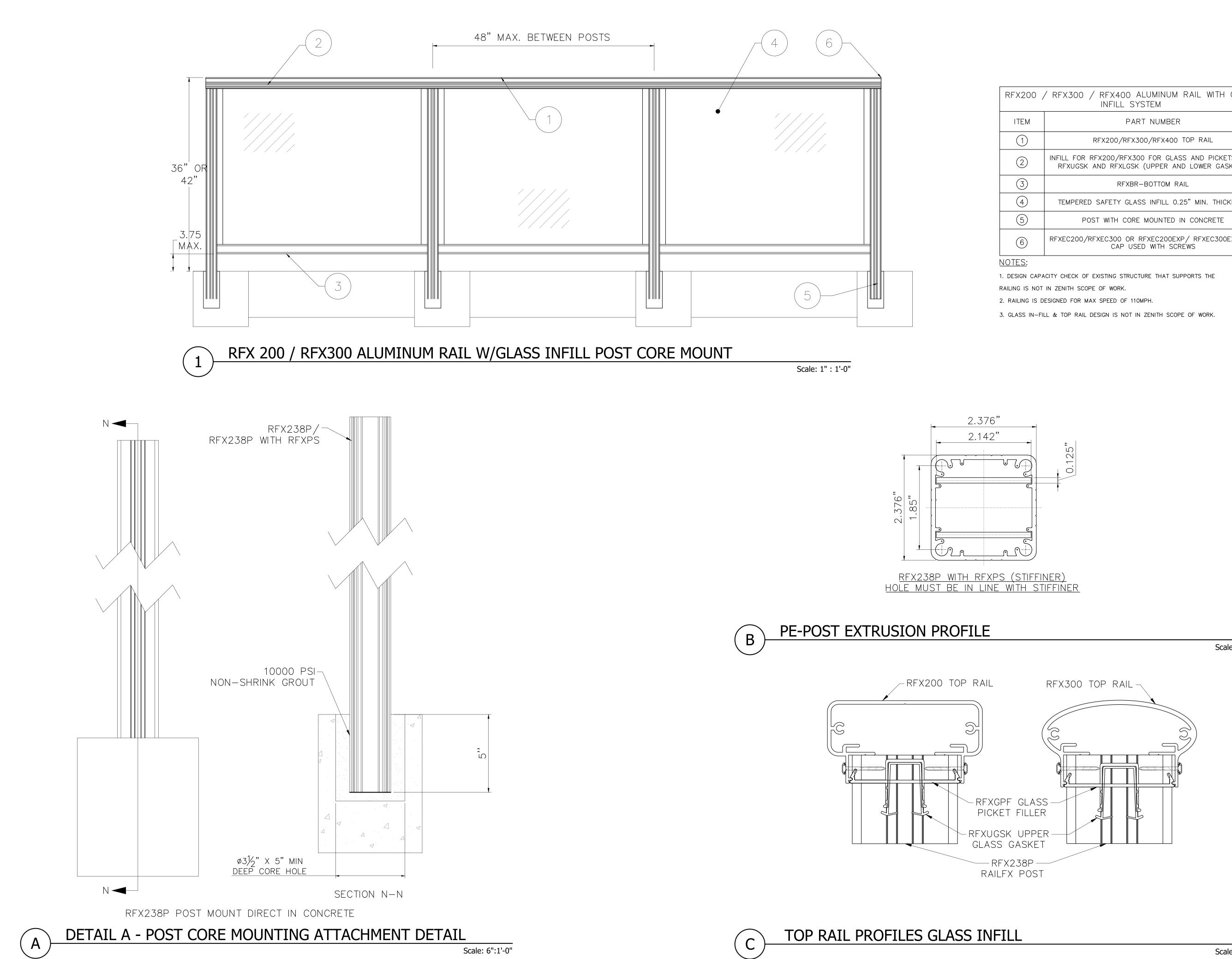

 Θ

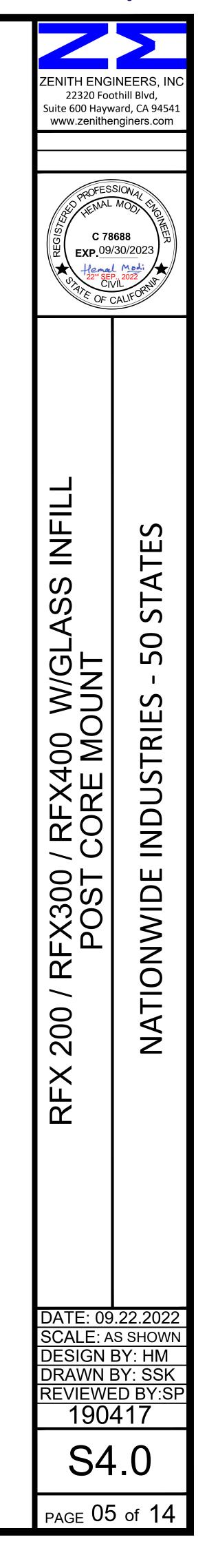

4"

A


|⊲__⊳|⊲_

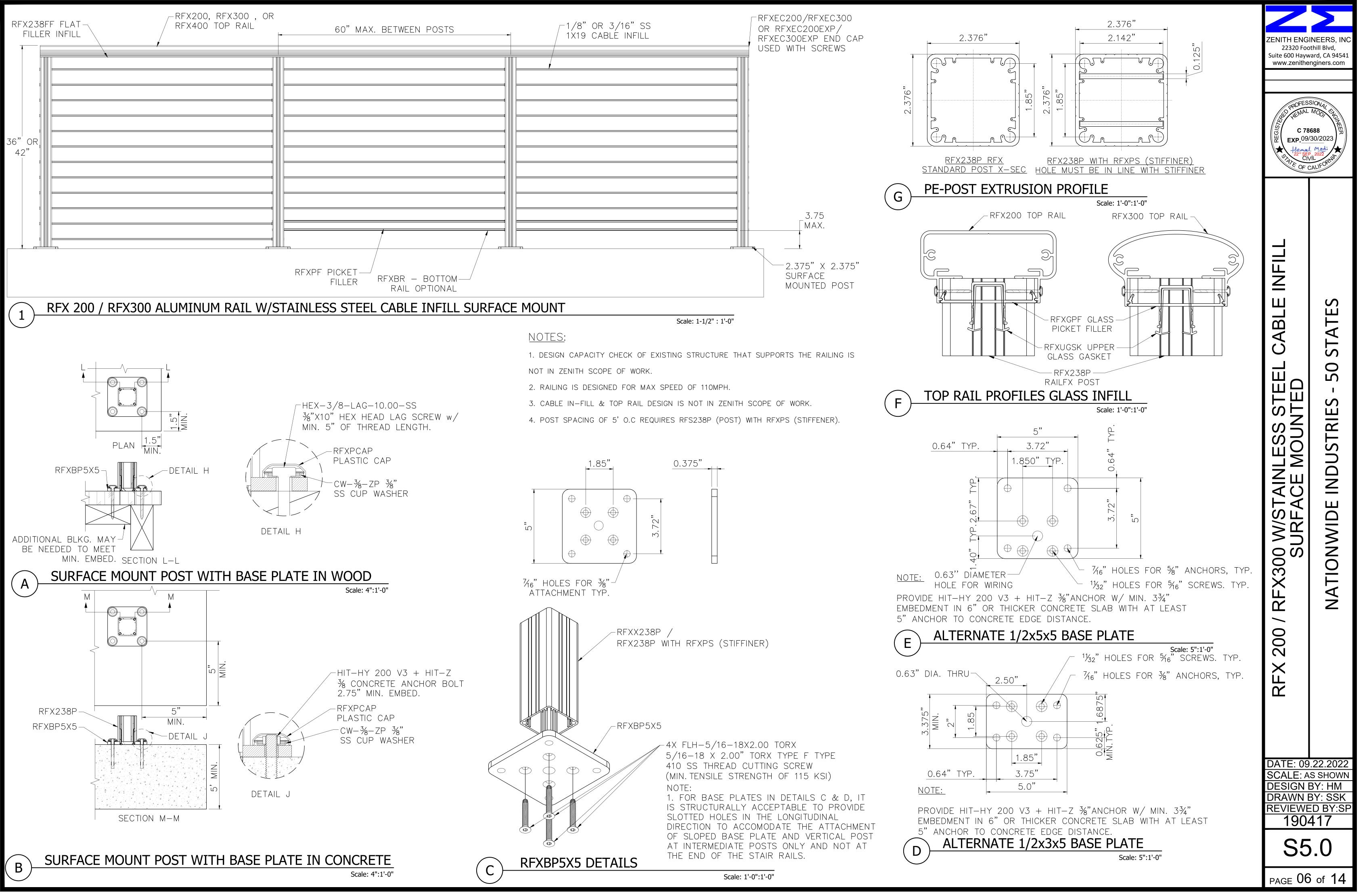
-4X CW-3/8-ZP 3%" SS CUP WASHER D Page 10 of 96

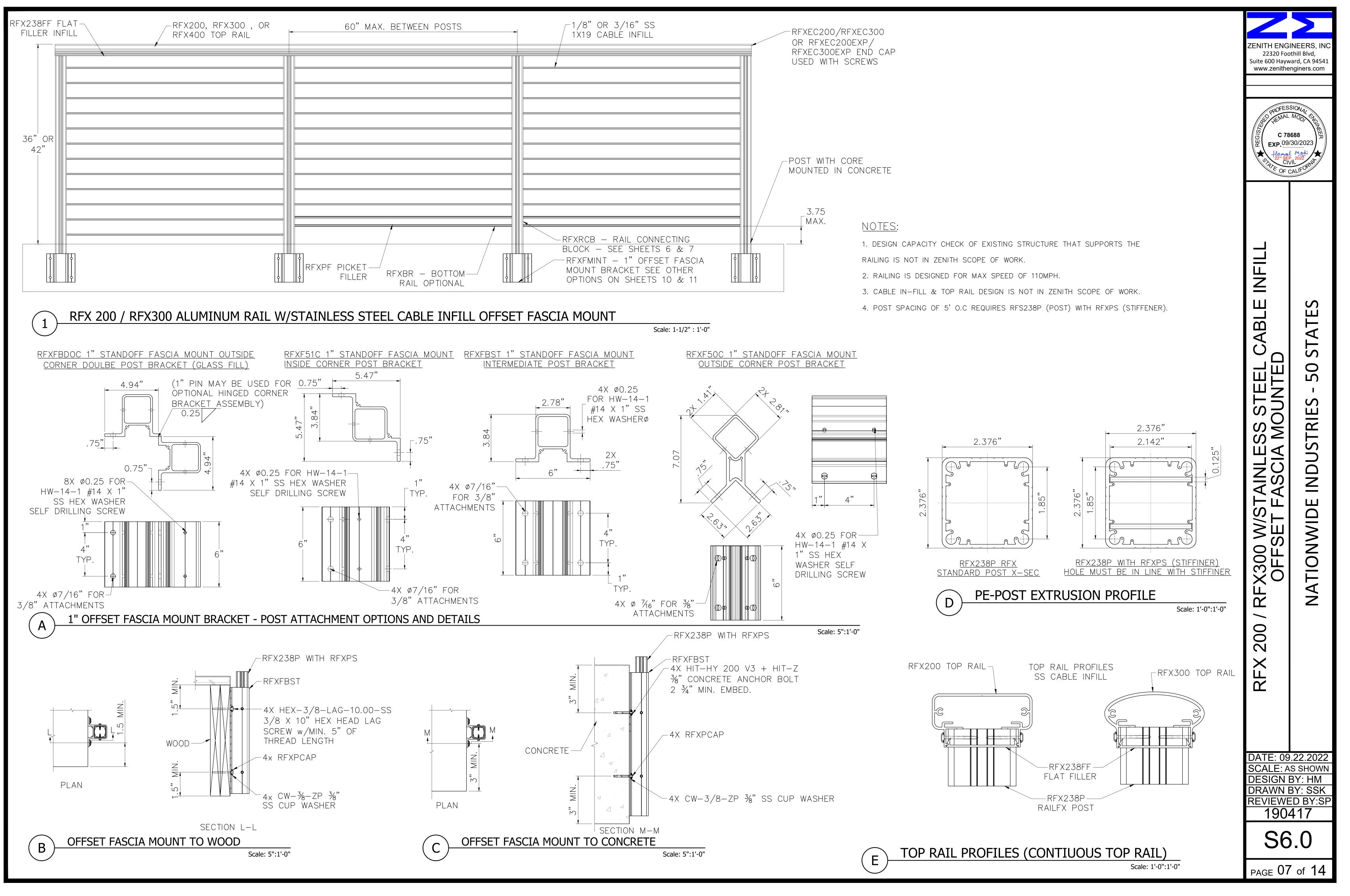


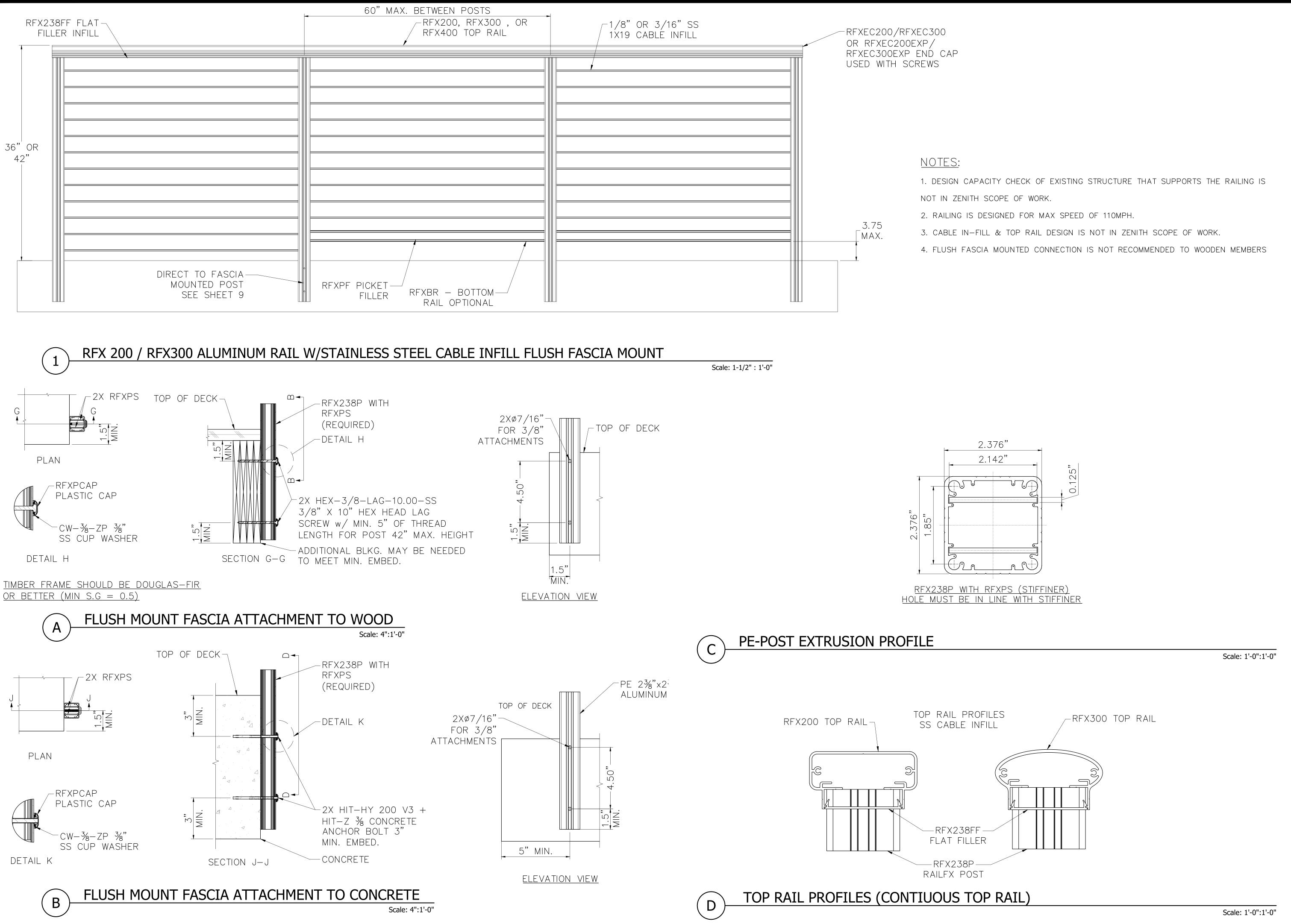


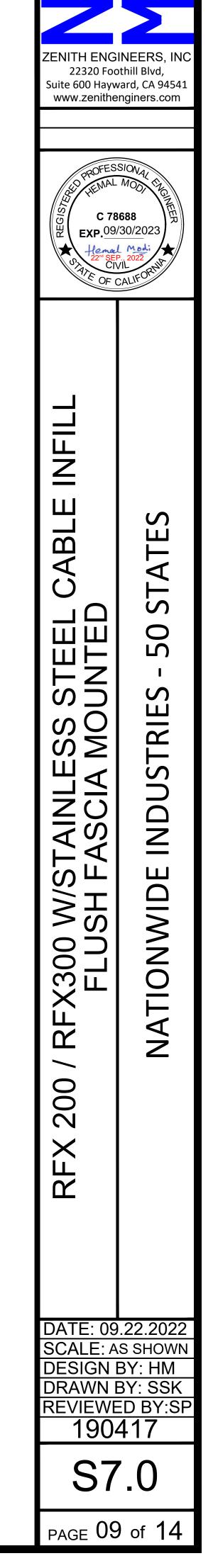
Scale: 1'-0":1'-0"

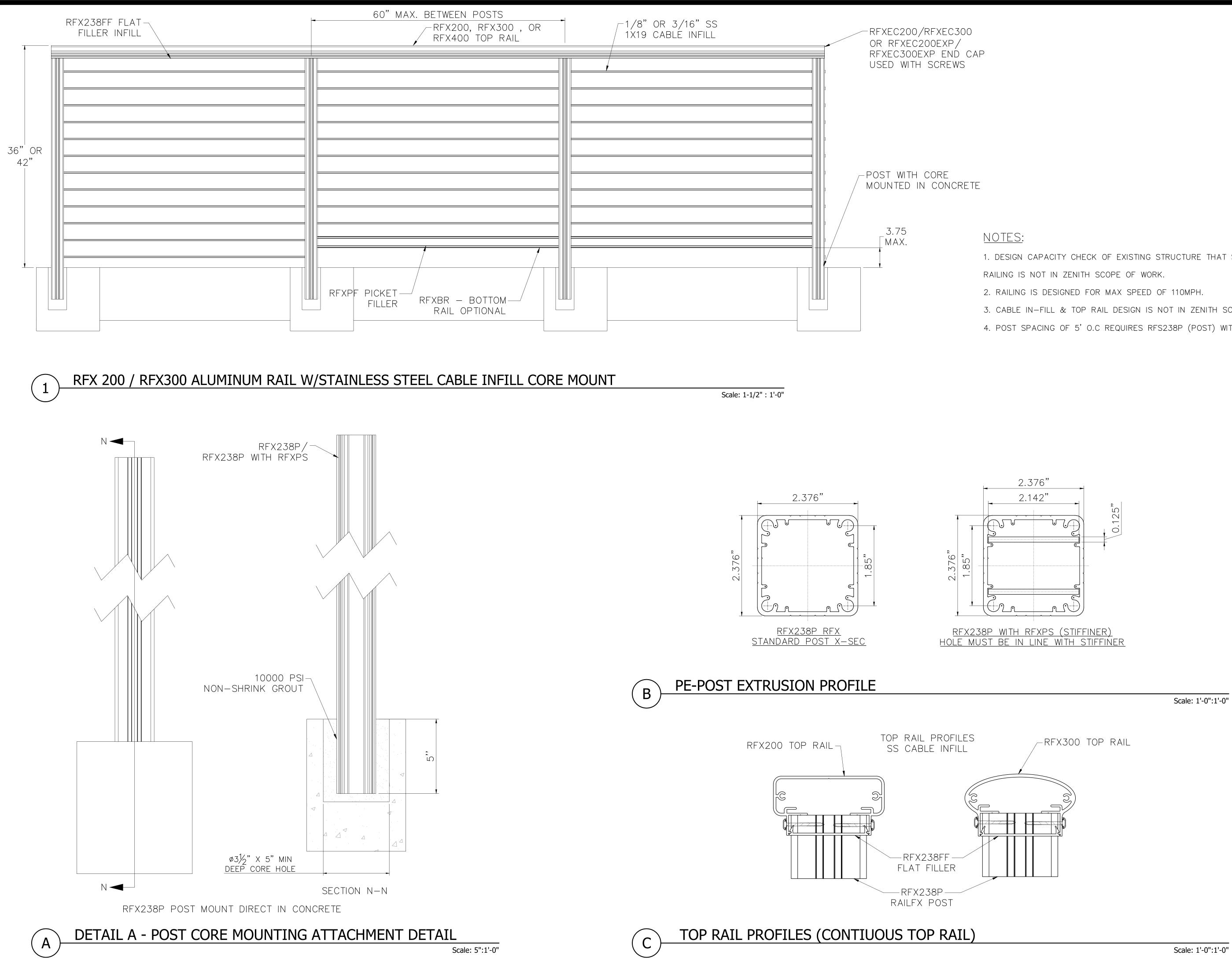
00	/	INFILL S	SYSTEM	RAIL	WIIH	GLASS	
		PA	ART NUMBER				

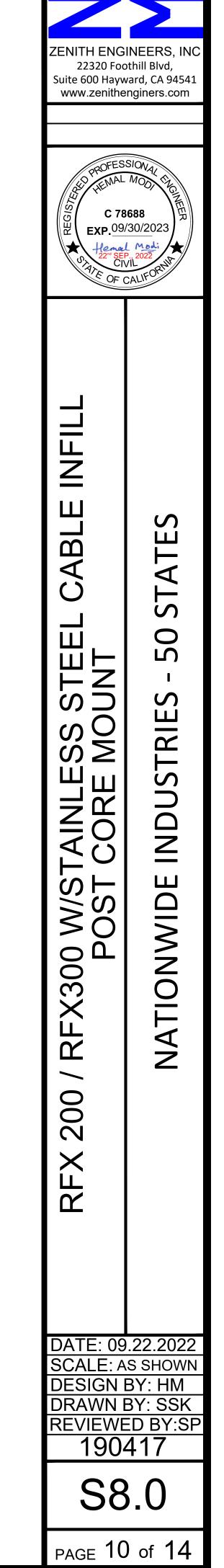


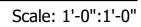

, x200	/ RFX300 / RFX400 ALUMINUM RAIL WITH GLASS INFILL SYSTEM
TEM	PART NUMBER
1	RFX200/RFX300/RFX400 TOP RAIL
2	INFILL FOR RFX200/RFX300 FOR GLASS AND PICKETS USES RFXUGSK AND RFXLGSK (UPPER AND LOWER GASKETS)
3	RFXBR-BOTTOM RAIL

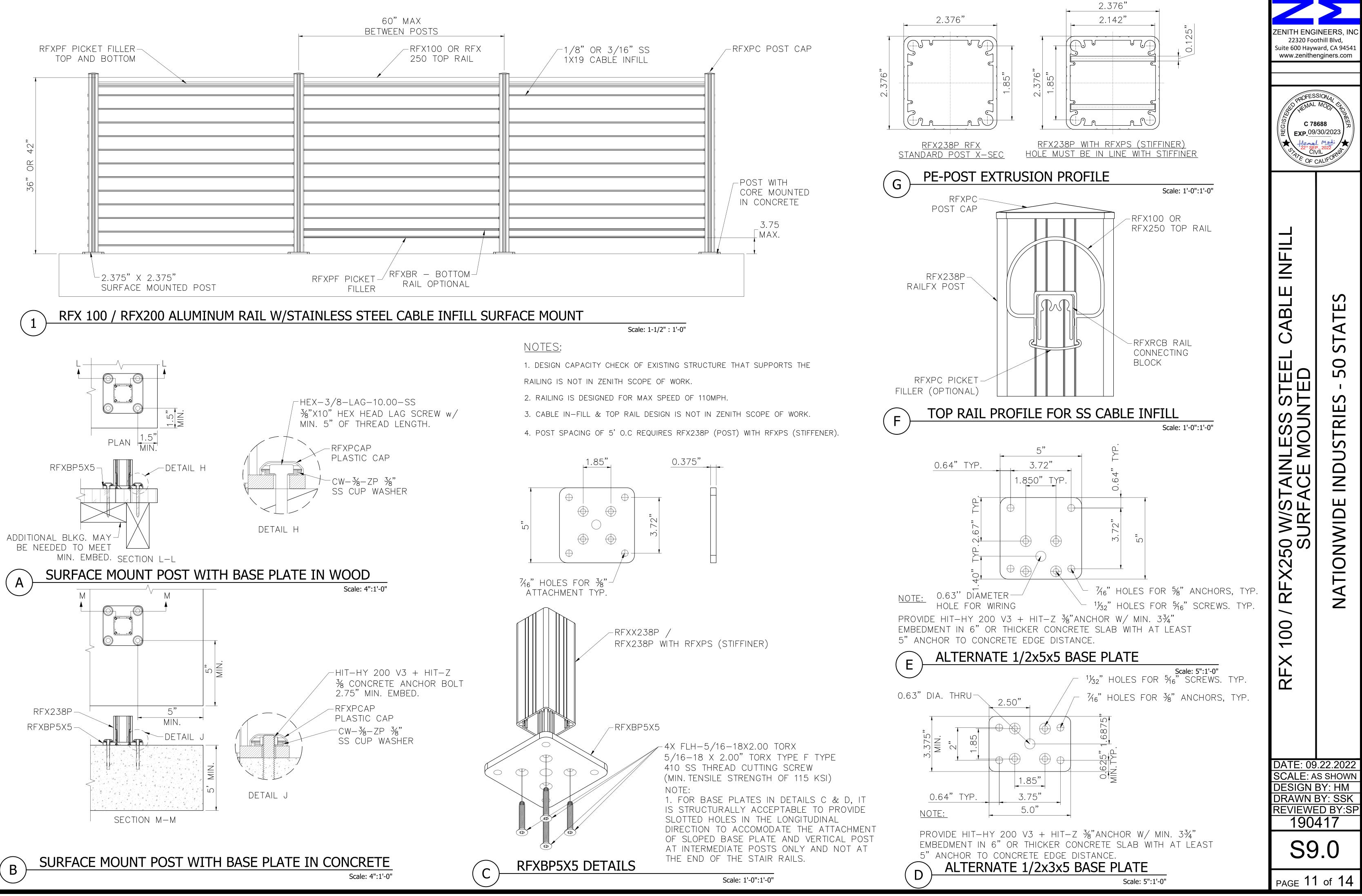

(4)	TEMPERED SAFETY GLASS INFILL 0.25" MIN. THICKNESS
5	POST WITH CORE MOUNTED IN CONCRETE
6	RFXEC200/RFXEC300 OR RFXEC200EXP/ RFXEC300EXP END CAP USED WITH SCREWS

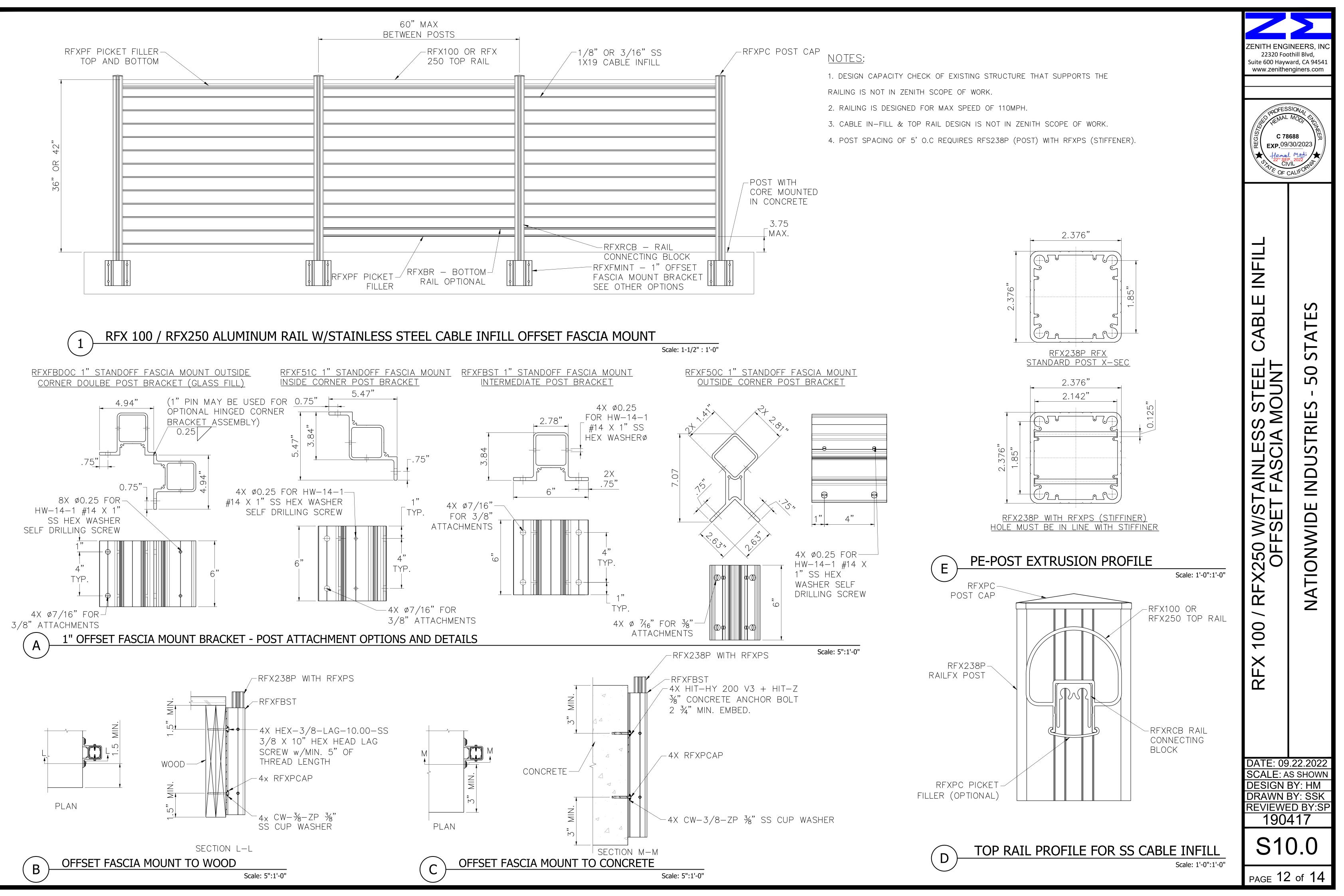

Scale: 1'-0":1'-0"

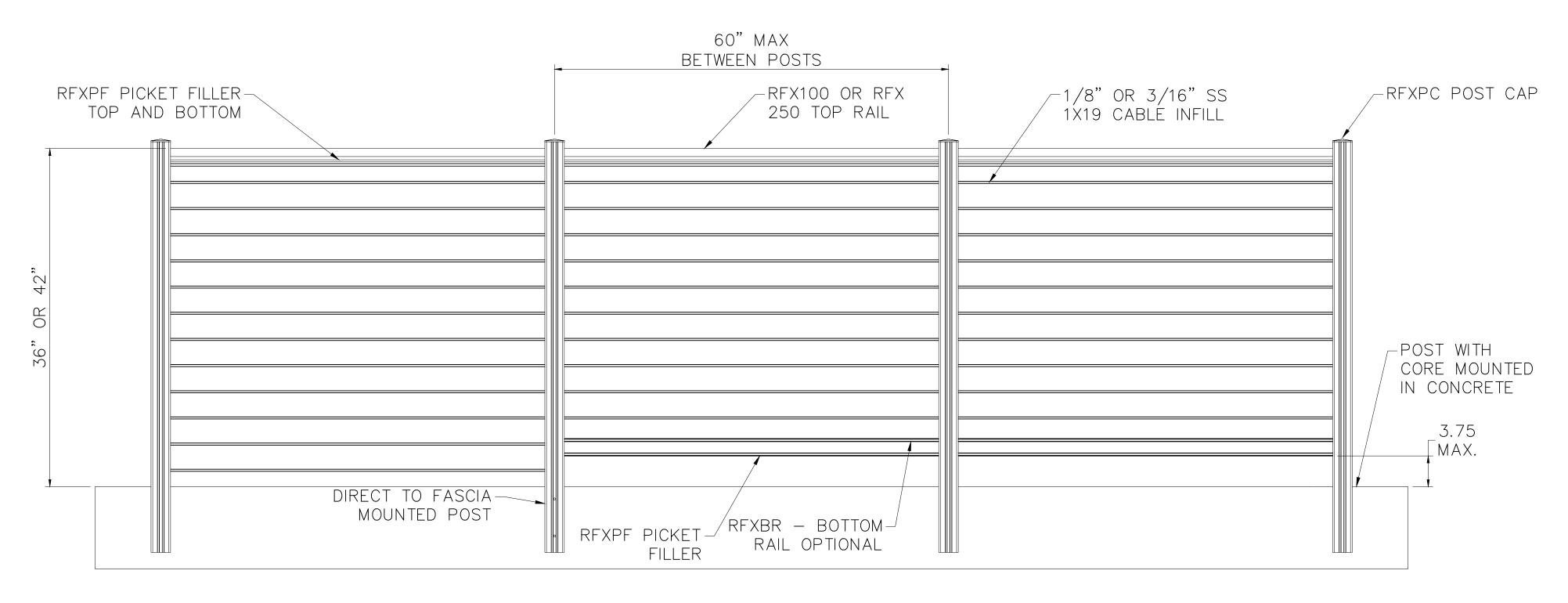


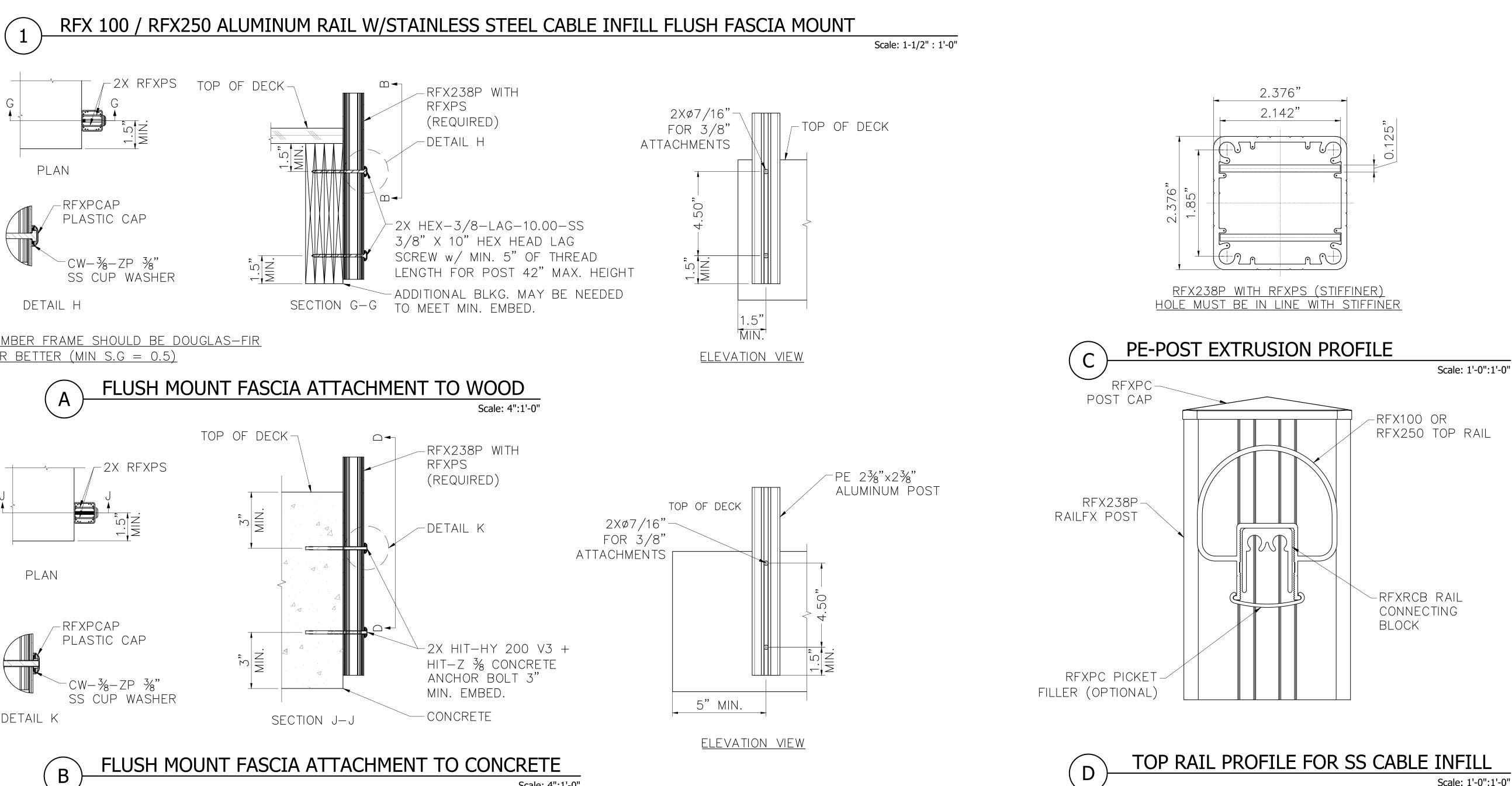


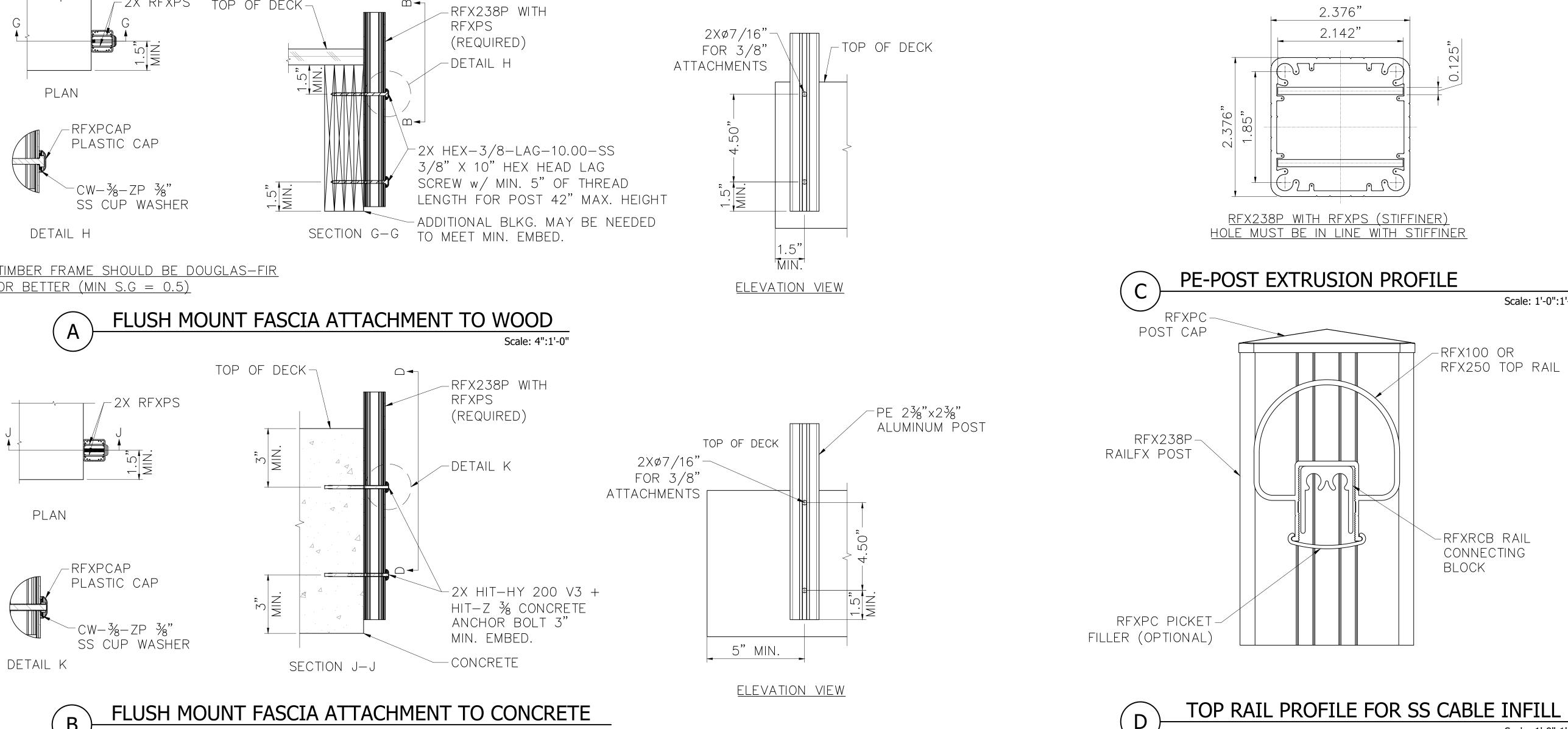


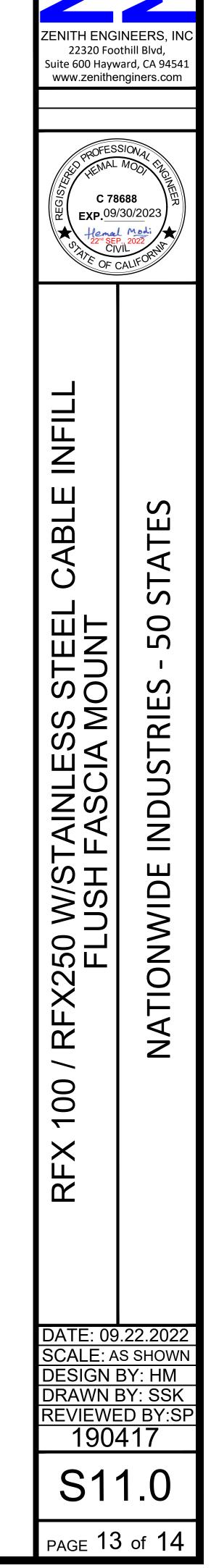





1. DESIGN CAPACITY CHECK OF EXISTING STRUCTURE THAT SUPPORTS THE


- 3. CABLE IN-FILL & TOP RAIL DESIGN IS NOT IN ZENITH SCOPE OF WORK.
- 4. POST SPACING OF 5' O.C REQUIRES RFS238P (POST) WITH RFXPS (STIFFENER).

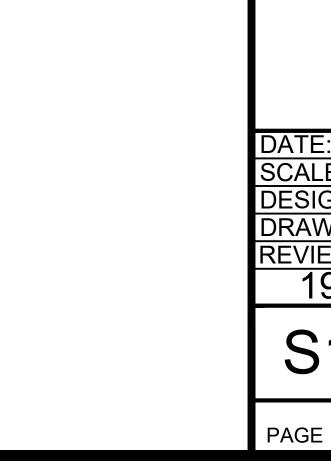




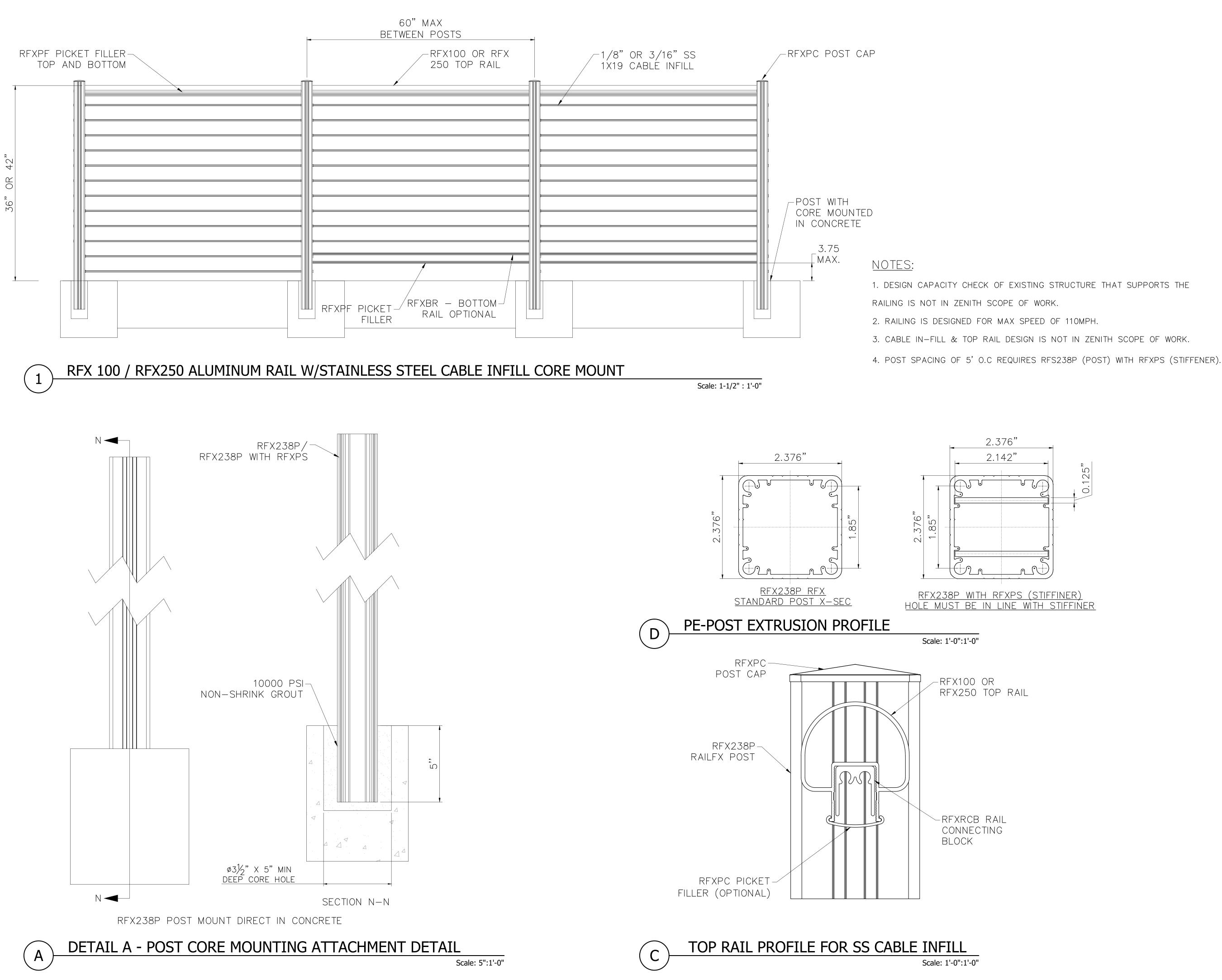
TIMBER FRAME SHOULD BE DOUGLAS-FIR <u>OR BETTER (MIN S.G = 0.5)</u>

Scale: 4":1'-0"

NOTES:



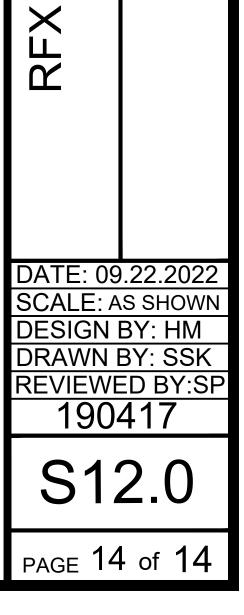
1. DESIGN CAPACITY CHECK OF EXISTING STRUCTURE THAT SUPPORTS THE RAILING IS NOT IN ZENITH SCOPE OF WORK.


2. RAILING IS DESIGNED FOR MAX SPEED OF 110MPH.

3. CABLE IN-FILL & TOP RAIL DESIGN IS NOT IN ZENITH SCOPE OF WORK.

4. FLUSH FASCIA MOUNTED CONNECTION IS NOT RECOMMENDED TO WOODEN MEMBERS

Scale: 1'-0":1'-0"



STATES 50 S USTRIE **ND** NATIONWIDE

CABLE X250 W/STAINLESS STEEL POST CORE MOUNT

100

INFILL

190417 - RailFX Railing Design - Nationwide Industries **Design for all 50 states.**

SCOPE OF WORK:

Zenith scope of work includes design of the post and its anchorage. Member design checked based on ASCE 7-16 Section 4.5.1 & IBC 2021 Section 1607.9

2. DESIGN CHECK OF POST (WITHOUT STIFFENER) **RFX238P RFX Standard Post**

For one- and two-family dwellings, and for factory, industrial, and storage occupancies in areas that are not accessible to the public and that serve an occupant load not greater than 50:

Consider 200 pounds concentrated load for top rail or 20 pound per foot of uniform load for top rail.

$L_{outterlength RFX238P} \coloneqq 2.376$ in

 $H_{post_length} \coloneqq 42 \ in = 3.5 \ ft$ $L_{panel_length} \coloneqq 48 \ in = 4 \ ft$ Consider 42"x4' Panel

 $P_{post_load_1} \coloneqq \max \left(200 \ lbf, 20 \ plf \cdot L_{panel_length} \right) = 200 \ lbf$ Consider 200 pounds concentrated load or 20 pound per foot of uniform load.

 $M_{post_flexure_1} \coloneqq \max \left(200 \ \textit{lbf} \cdot H_{post_length}, 20 \ \textit{plf} \cdot L_{panel_length} \cdot H_{post_length} \right) = 8.4 \ \textit{kip} \cdot \textit{in}$

 $I_{nost} = 0.9341 \ in^4$

 $y_c \coloneqq 1.1877 \ in$

 $J := 0.9335 \ in^4$

$$S_{post} \coloneqq rac{I_{post}}{y_c} = 0.786 \ oldsymbol{in}^3$$

$$\begin{split} L_{b} &:= H_{post_length} = 42 \ \textit{in} & S_{c} := S_{post} = 0.786 \ \textit{in}^{3} & I_{y} := I_{post} = 0.93 \ \textit{in}^{4} \\ C_{b} &:= 1.0 & \text{So}, & S := \frac{2 \cdot L_{b} \cdot S_{c}}{C_{b} \cdot \sqrt{I_{y} \cdot J}} = 70.75 & \text{while} & S_{1} := 95 \end{split}$$

When $S < S_1$ (Aluminum Design Manual Table 2-20 for 6063-T5)

$$\sigma_{bending_aluminumallowable} \coloneqq (17.5 - 0.917 \cdot \sqrt{S}) \cdot 1 \ ksi = 9.79 \ ksi$$

$$\sigma_{bendingpost_1} \coloneqq \frac{M_{post_flexure_1}}{S_c} = 10.68 \ ksi$$

$$DCR_{post_1} := \frac{\sigma_{bendingpost_1}}{\sigma_{bending_aluminumallowable}} = 1.09$$
 Acceptable.

Even though it is 9% overstressed it is okay by engineering judgment because this is conservative approach and load will be shared by other post due to frame action.

190417-CO3-Railing-MathcadCalcs-HKM.mcdx

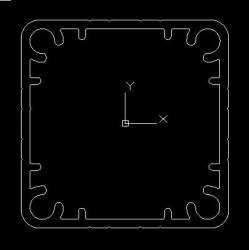
from AutoCAD

from AutoCAD

from AutoCAD

Table A.3.4 MECHANICAL PROPERTIES FOR WROUGHT ALUMINUM PRODUCTS (Continued)

ALLOY	TEMPER	PRODUCT	THICKNESS in.	F _{tu} ksi	F _{ty} ksi	F _{cy} ksi	F _{su} ksi	<i>E</i> ksi
6005	-T5	Extrusions	up thru 1.000	38	35	35	24	10,100
6005A	-T61	Extrusions	up thru 1.000	38	35	35	24	10,100
6061	-T6, T651	Sheet & Plate	0.010 to 4.000	42	35	35	27	10,100
	-T6, T6510, T6511	Extrusions	All	38	35	35	24	10,100
	-T6, T651	Rod & Bar	up thru 8.000	42	35	35	25	10,100
	- T6	Drawn Tube	0.025 to 0.500	42	35	35	27	10,100
	-T6	Pipe	All	38	35	35	24	10,100
6063	-T5	Extrusions	up thru 0.500	22	16	16	13	10,100
	-T5	Extrusions	0.501 to 1.000	21	15	15	12	10,100
	-T52	Extrusions	up thru 1.000	22	16	16	13	10,100
	-T6	Extrusions & Pipe	All	30	25	25	19	10,100


Table 2-20 ALLOWABLE STRESSES FOR BUILDING-TYPE STRUCTURES (UNWELDED)

Allowable Stresses F/Ω (k/in ²)	Section	F/Ω			6063 – T	5	Extrus	sions (Up thi	ru 0.500 in. thick)
Axial Tension			_		6063 – T	52	Extrus	sions (Up thi	ru 1.000 in. thick)
axial tension stress on net effective area	D.2b	11.3			$F_{ty} = 16 \text{ k}$ $F_{cy} = 16 \text{ k}$		E = 10 $k_t = 1$,100 k/in²	
axial tension stress on gross area	D.2a	9.7			$F_{tu} = 22 \text{ k}$	/in²			
Flexure		Tension	Compr	ression					
elements in uniform stress	F.8.1.1	9.7	see B.5	5.4.1 thru B	.5.4.5 and	d E.4.2			
elements in flexure	F.8.1.2, F.4.1	12.6	12.6	see also	5F.4.2				
round tubes	F.6.1	11.3	11.3	see also	F.6.2				
rods	F.7	12.6	12.6						
Bearing									
bolts or rivets on holes	J.3.7a, J.4.7	22.6							
bolts on slots, pins on holes, flat surfaces	J.3.7b, J.7	15.0							
		Slenderness	F/9	Ω for		F/ Ω	for		F/Ω for
Avial Campunacian		S	S	≤ S ₁	S₁	S₁ < S	5 < S ₂	S ₂	$S \ge S_2$

Axial Compression		Slenderness S	F/Ω for $S \leq S_1$	S ₁	F/Ω for $S_1 < S < S_2$	S ₂	F/Ω for $S \ge S_2$
all shapes member buckling	E.3	kL/r			8.9 – 0.037 S	99	51,352 /S ²
Flexural Compression open shapes lateral-torsional buckling	F.2.1	$L_{b}/(r_{ye}C_{b}^{-1/2})$			10.5 – 0.036 S	119	86,996 /S ²
closed shapes lateral-torsional buckling	F.3.1	$2L_bS_c/(C_b(I_yJ)^{1/2})$			10.5 – 0.070 S ^{1/2}	3823	23,599 /S
rectangular bars lateral-torsional buckling	F.4.2	$(d/t)(L_b/(C_b d))^{1/2}$			17.2 – 0.256 S	45	11,420 /S²
round tubes local buckling	F.6.2	R_b/t	17.5 – 0.917 S ^{1/2}	95	11.6 – 0.320 S ^{1/2}	275	3,776 /[S(1+S ^{1/2} /35) ²]
Elements—Uniform Compressio	n						
flat elements supported on one edge in columns whose buckling axis is not an axis of symmetry	B.5.4.1	b/t	9.7	8.2	11.8 – 0.260 S	19	2,417 /S ²
flat elements supported on one edge in all other columns and all beams	B.5.4.1	b/t	9.7	8.2	11.8 – 0.260 S	15.9	122 /S
flat elements supported on both edges	B.5.4.2	b/t	9.7	25.6	11.8 – 0.083 S	50	382 /S
flat elements supported on both edges and with an intermediate stiffener	B.5.4.4	λ_{s}	9.7	18.8	10.5 – 0.044 S	99	60,414 /S ²
curved elements supported on both edges	B.5.4.5	R_b/t	9.7	36.7	11.6 – 0.320 S ^{1/2}	275	3,776 /[S(1+S ^{1/2} /35) ²]
flat elements—alternate method	B.5.4.6	λ_{eq}	9.7	41.0	11.8 – 0.052 S	80	611 /S
Elements—Flexural Compressio	<u>n</u>						
flat elements supported on both edges	B.5.5.1	b/t	12.6	62.9	17.2 – 0.072 S	119	1,017 /S
flat elements supported on tension edge, compression edge free	B.5.5.2	b/t	12.6	11.7	17.2 – 0.389 <i>S</i>	29	4,932 /S ²
flat elements supported on both edges and with a longitudinal stiffener	B.5.5.3	b/t	12.6	141.1	17.2 – 0.032 S	266	2,280 /S
flat elements—alternate method	B.5.5.4	λ_{eq}	12.6	40.9	17.2 – 0.111 S	77	661 /S
Elements—Shear flat elements supported on both edges	G.2	b/t	5.8	43.6	7.2 – 0.031 S	96	38,665 /S ²

RFX238P RF	X Standard Post
RE	GIONS
Area:	1.1223
Perimeter:	21.9009
Bounding box:	X: -1.1880 1.1870
Y: -	1.1877 1.1873
Centroid:	X: 0.0000
Y: 0	.0000
Moments of inertia	a: X: 0.9342
Y: 0	.9341
Product of inertia:	XY: 0.0007
Radii of gyration:	X: 0.9123
Y: 0	.9123
	s and X-Y directions about centroid:
	9348 along [0.7173 0.6968]
J: 0	.9335 along [-0.6968 0.7173]

RFX238P W/ RFXPS (Stiffener)

0

REGIONS
Area: 1.6691 sq in
Perimeter: 30.1330 in
Bounding box: X: -1.1880 1.1880 in
Y: -1.1905 1.1855 in
Centroid: X: 0.0000 in
Y: 0.0000 in
Moments of inertia: X: 1.1464 sq in sq in
Y: 1.1509 sq in sq in
Product of inertia: XY: 0.0000 sq in sq in
Radii of gyration: X: 0.8287 in
Y: 0.8304 in
Principal moments (sq in sq in) and X-Y directions about centroid:
I: 1.1464 along [1.0000 -0.0093]
J: 1.1509 along [0.0093 1.0000]

<u>3. DESIGN CHECK OF POST (WITH STIFFENER)</u> RFX238P W/ RFXPS (Stiffener)

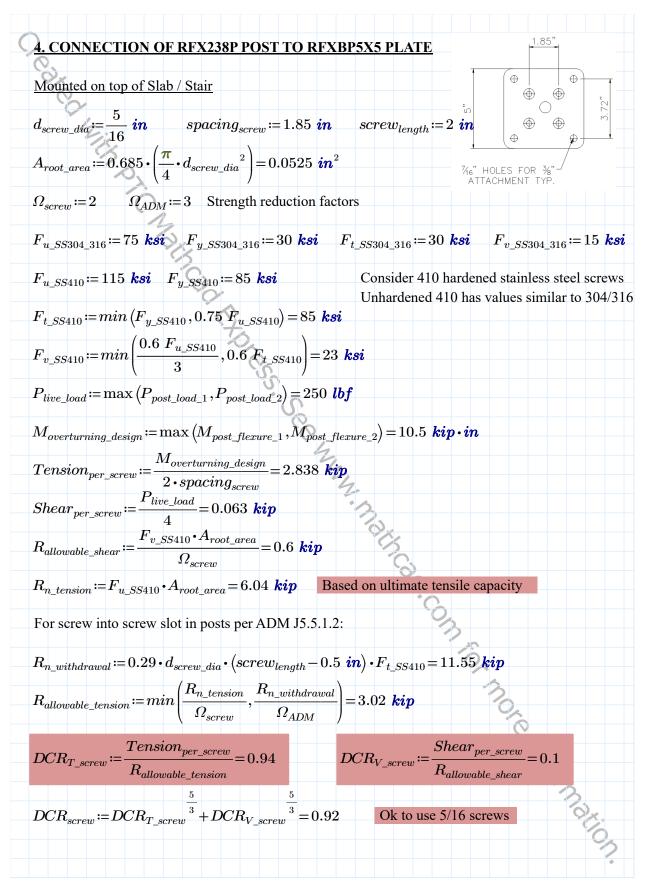
For commercial use or occupancies that are accessible to the public and area that serve an occupant load greater than 50:

Consider 200 pounds concentrated load for top rail or 50 pound per foot of uniform load for top rail.

$H_{post\ length} \coloneqq 42$ in = 3.5 f	$L_{panel\ length} \coloneqq 60$	in = 5 ft	Consider 42"x5' Panel
post length or or of J	-panel length	J.	

190417-CO3-Railing-MathcadCalcs-HKM.mcdx

Zenith Project: 190417-CO3 Project Title: Railing Design Project Engineer: Hemal Modi, P.E. Reviewed By: Senthil Puliyadi, M.S., M. Eng., P.E.


$$\begin{split} P_{post_load_2} \coloneqq \max \left(200 \ lbf, 50 \ plf \cdot L_{panel_length} \right) &= 250 \ lbf \\ Consider 200 pounds concentrated load or 50 pound per foot of uniform load. \\ M_{post_flexure_2} \coloneqq \max \left(200 \ lbf \cdot H_{post_length}, 50 \ plf \cdot L_{panel_length} \cdot H_{post_length} \right) &= 10.5 \ kip \cdot in \\ I_{post} \coloneqq 1.1464 \ in^4 \\ from AutoCAD \\ y_c \coloneqq 0.8304 \ in \\ from AutoCAD \\ J \coloneqq 1.1509 \ in^4 \\ from AutoCAD \\ S_{post} \coloneqq \frac{I_{post}}{y_c} &= 1.381 \ in^3 \\ L_b \coloneqq H_{post_length} &= 42 \ in \\ S_c \coloneqq S_{post} = 1.381 \ in^3 \\ I_y \coloneqq I_{post} = 1.15 \ in^4 \\ C_b \coloneqq 1.0 \quad \text{So}, \quad S \coloneqq \frac{2 \cdot L_b \cdot S_c}{C_b \cdot \sqrt{I_y \cdot J}} &= 100.96 \quad \text{while} \quad S_1 \coloneqq 95 \\ \forall \text{When} \quad S_1 < S \quad (\text{Aluminum Design Manual Table 2-20 for 6063-T5}) \\ \sigma_{bending_aluminumallowable} \coloneqq \left(10.5 - 0.07 \cdot \sqrt{S} \right) \cdot 1 \ ksi = 9.8 \ ksi \\ \sigma_{bending_ost_2} \coloneqq \frac{\sigma_{bending_ost_2}}{\sigma_{bending_aluminumallowable}} = 0.78 \quad \text{Acceptable}. \end{split}$$

All RFX238P Post connections are checked for 250 lb live load and similar design is applicable to PFX1000P post (3"x3" Tube Post) with PFX1000PB post base, under IRC residential one or two family dwellings limitations.

For glass panels with 4' max panel length, the ASD wind load doesn't govern unless it exceeds 35.5 psf

190417-CO3-Railing-MathcadCalcs-HKM.mcdx

190417-CO3-Railing-MathcadCalcs-HKM.mcdx

Zenith Project: 190417-CO3 Project Title: Railing Design Project Engineer: Hemal Modi, P.E. Reviewed By: Senthil Puliyadi, M.S., M. Eng., P.E.

5. CONCRETE ANCHOR CONNECTION FOR RFX238P POST

CASE 1: Mounted on top of concrete slab / concrete stair

Base Plate Anchorage design for Concrete Connection

$$V_{reaction} \coloneqq P_{live_load} = 250 \ lbf$$

 $M_{overturning_design}$ = 10.5 kip · in

See attached HILTI cales for anchorage design assuming minimum concrete thickness of 6 inches. It is okay to use HIT-HY 200 + HIT-Z 3/8 anchors with minimum embedment depth of 2.75 in and minimum edge distance of 5".

CASE 2: Flush Fascia Mounted in concrete

 $l_{anchrage_leverarm} \coloneqq 4.5$ in

CASE 2a - For load perpendicular to the fascia

 $V_{shear_pure} \coloneqq P_{live_load} = 250 \ lbf$

CASE 2b - For load vertically down

 $T_{tension_pure} \coloneqq P_{live_load} = 250 \ lbf$ $M_{overturning \ design} = 10500 \ lbf \cdot in$

Case 2a governs

Flush fascia mounted will govern the anchorage design as it has single rows of bolts, same design is applicable for offset fascia mounted.

See attached HILTI calcs for anchorage design assuming minimum concrete thickness of 6 inches. It is okay to use HIT-HY 200 + HIT-Z 3/8 anchors with minimum embedment depth of 2.75 in and minimum edge distance of 5".

Note: Same design is applicable for offset fascia mounted connection to concrete.

CASE 3: Core mounted in concrete

$$S_1 \coloneqq 2500 \ \textbf{psi} \qquad \qquad P \coloneqq P_{live_load} = 250 \ \textbf{lbf} \qquad h \coloneqq H_{post_length} = 3.5 \ \textbf{ft}$$

 $b\!\coloneqq\!\sqrt{2}~L_{outterlength_RFX238P}\!=\!3.36~in$

per 2018 IBC section 1807.3

$$A \coloneqq \frac{2.34 \cdot P}{S_1 \cdot b} = 0.07 \text{ in } \qquad d \coloneqq 0.5 \cdot A \cdot \left(1 + \sqrt{\left(1 + \frac{4.36 \cdot h}{A}\right)}\right) = 1.82 \text{ in }$$

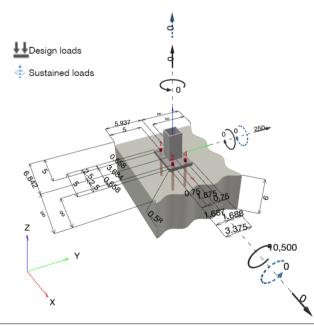
So provide min. 3" embedment.

190417-CO3-Railing-MathcadCalcs-HKM.mcdx

Zenith Project: 190417-CO3 Project Title: Railing Design Project Engineer: Hemal Modi, P.E. Reviewed By: Senthil Puliyadi, M.S., M. Eng., P.E.

www.hilti.com

Company:	Zenith Engineers	Page:	1
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP3x5	Date:	9/5/2022
Fastening point:	RFXBP3x5 post base for RFC238P		


Specifier's comments: Install per manufacturer's recommendations

1 Input data

-		
Anchor type and diameter:	HIT-HY 200 V3 + HIT-Z-R 3/8	
Item number:	2018452 HIT-Z-R 3/8" x 5 1/8" (element) / 2334276 HIT-HY 200-R V3 (adhesive)	
Effective embedment depth:	h _{ef,act} = 3.750 in. (h _{ef,limit} = - in.)	
Material:	A4	
Evaluation Service Report:	ESR-4868	Zenith Notes:
Issued I Valid:	11/1/2021 11/1/2022	1. Depth of concrete shall not be less than 6".
Proof:	Design Method ACI 318-19 / Chem	Edge distance of concrete from center of anchor bolt shall not be less than 5" on all sides.
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.	3. Minimum compressive strength of concrete shall
Anchor plate ^R :	l _x x l _y x t = 5.000 in. x 3.375 in. x 0.500 in.;	not be less than 2,500psi.
Profile:	Square HSS (AISC), ; (L x W x T) = 1.850 in. x 1.850	o in. x 0.100 in.
Base material:	cracked concrete, 2500, f_c ' = 2,500 psi; h = 6.000 in.	, Temp. short/long: 32/32 °F
Installation:	hammer drilled hole, Installation condition: Dry	
Reinforcement:	tension: not present, shear: not present; no supplem	ental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar	

^R - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.l	hilti.com
-------	-----------

Address: 22320	Foothill Blvd, Suite 600, Hayward, CA 94541	C	
	Toothin bive, oute ooo, hayware, on 54541	Specifier:	
Phone I Fax: 415 6	19 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design: Concr	ete Mounted - BP3x5	Date:	9/5/2022
Fastening point: RFXB	P3x5 post base for RFC238P		

1.1 Load combin	ation and design results			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Outward	$\begin{split} N &= 0; \ V_x = 0; \ V_y = -250; \\ M_x &= 10,500; \ M_y = 0; \ M_z = 0; \\ N_{sus} &= 0; \ M_{x,sus} = 0; \ M_{y,sus} = 0; \end{split}$	no	99
2	<u>Inward</u>	$\frac{N = 0; V_x = 0; V_y = 250;}{M_x = -10,500; M_y = 0; M_z = 0;}$ $\frac{N_{sus} = 0; M_{x,sus} = 0; M_{y,sus} = 0;}{N_{sus} = 0; M_{x,sus} = 0;}$	<u>no</u>	<u>99</u>

2 Load case/Resulting anchor forces

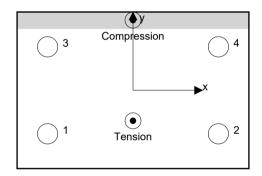
Controlling load case: 2 Inward

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

· · ·	<i>'</i>	,		
Anchor	Tension force	Shear force	Shear force x	Shear force y
1	2,058	63	0	63
2	2,058	63	0	63
3	362	63	0	63
4	362	63	0	63

max. concrete compressive strain: $0.14 \ [\%]$ max. concrete compressive stress: $2,762 \ [psi]$ resulting tension force in (x/y)=(0.000/-0.657): $4,840 \ [lb]$ resulting compression force in (x/y)=(0.000/1.512): $4,840 \ [lb]$


Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ଦ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	2,058	4,749	44	OK
Pullout Strength*	2,058	5,169	40	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	4,840	4,908	99	OK

* highest loaded anchor **anchor group (anchors in tension)

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company:	Zenith Engineers	Page:	3
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP3x5	Date:	9/5/2022
Fastening point:	RFXBP3x5 post base for RFC238P		

3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-4868
φ N _s	_a ≥ N _{ua}	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.08	94,200

Calculations

N_{sa} [lb] 7,306

Results

 N _{sa} [lb]	φ _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
7,306	0.650	4,749	2,058

3.2 Pullout Strength

$N_{pn} = N_p \lambda_a$	refer to ICC-ES ESR-4868
$\phi N_{pn} \ge N_{ua}$	ACI 318-19 Table 17.5.2

Variables

λ _a	N _p [lb]
1.000	7,952
Calculations	
N [lb]	

____N_{pn} [Ib] 7,952

Results

N _{pn} [lb]	ϕ_{concrete}	φ N _{pn} [lb]	N _{ua} [lb]
7,952	0.650	5,169	2,058

www.hilti.com

Company:	Zenith Engineers	Page:	4
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP3x5	Date:	9/5/2022
Fastening point:	RFXBP3x5 post base for RFC238P		

3.3 Concrete Breakout Failure

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
$\phi N_{cbg} \ge N_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\Psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\begin{split} \psi_{cp,N} &= MAX\!\left(\!\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\!\right) \leq 1.0\\ N_{b} &= k_{c} \ \lambda_{a} \ \sqrt{f_{c}} \ h_{ef}^{1.5} \end{split}$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{b} = k_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{\text{c,N}}$
3.750	0.000	0.657	5.000	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
11.250	17	1.000	2,500	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\psi_{\text{ec2},\text{N}}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
178.86	126.56	1.000	0.895	0.967	1.000	6,173
Results						
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]			
7,550	0.650	4,908	4,840	-		

www.hilti.com

Company:	Zenith Engineers	Page:	5
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP3x5	Date:	9/5/2022
Fastening point:	RFXBP3x5 post base for RFC238P		

4 Shear load

	Load V _{ua} [lb]	Capacity Ϙ V _n [lb]	Utilization $\beta_v = V_{ua}/\Phi V_n$	Status
Steel Strength*	63	2,630	3	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	250	11,806	3	OK
Concrete edge failure in direction x-**	250	4,359	6	OK

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= ESR value	refer to ICC-ES ESR-4868
φ V _{ste}	$_{\sf el} \ge V_{\sf ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,V} [in. ²]	f _{uta} [psi]
0.08	94,200

Calculations

V_{sa} [lb] 4,384

Results

V _{sa} [lb]	φ _{steel}	φ V _{sa} [lb]	V _{ua} [lb]
4,384	0.600	2,630	63

www.hilti.com

Company:	Zenith Engineers	Page:	6
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP3x5	Date:	9/5/2022
Fastening point:	RFXBP3x5 post base for RFC238P		

4.2 Pryout Strength (Concrete Breakout Strength controls)

$V_{cpg} = K_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{b} \right]$	ACI 318-19 Eq. (17.7.3.1b)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{\text{ef}}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{b} = K_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	3.750	0.000	0.000	5.000
$\Psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
1.000	11.250	17	1.000	2,500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
178.86	126.56	1.000	1.000	0.967	1.000	6,173
Results						
V _{cpg} [lb]	ϕ_{concrete}	φ V _{cpg} [lb]	V _{ua} [lb]	_		
16,865	0.700	11,806	250	-		

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company:	Zenith Engineers	Page:	7
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP3x5	Date:	9/5/2022
Fastening point:	RFXBP3x5 post base for RFC238P		

4.3 Concrete edge failure in direction x-

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1b)
$\phi V_{cbg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Vc} see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
$\psi_{ec,V} = \left(\frac{1}{1 + \frac{e_v}{1.5c_{a1}}}\right) \le 1.0$	ACI 318-19 Eq. (17.7.2.3.1)
$\Psi_{\text{ed},V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$\Psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-19 Eq. (17.7.2.6.1)
$V_{b} = \left(7 \left(\frac{l_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	$\psi_{\text{ c,V}}$	h _a [in.]
5.000	5.000	0.000	1.000	6.000
l _e [in.]	λ _a	d _a [in.]	f _c [psi]	$\Psi_{\text{parallel},V}$
3.000	1.000	0.375	2,500	2.000

Calculations

A _{vc} [in. ²]	A _{Vc0} [in. ²]	$\psi_{\text{ec,V}}$	$\psi_{\text{ed},\text{V}}$	$\psi_{h,V}$	V _b [lb]
86.25	112.50	1.000	1.000	1.118	3,632
Results					
V _{cbg} [lb]	ϕ_{concrete}	φ V _{cbg} [lb]	V _{ua} [lb]	_	
6,227	0.700	4,359	250	-	

5 Combined tension and shear loads, per ACI 318-19 section 17.8 $\frac{\beta_N}{0.986}$ β_V ζ Utilization $\beta_{N,V}$ [%]Status $\beta_{NV} = (\beta_N + \beta_V) / 1.2 <= 1$

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company:	Zenith Engineers	Page:	8
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP3x5	Date:	9/5/2022
Fastening point:	RFXBP3x5 post base for RFC238P		

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- User is responsible for evaluating the hole bearing capacity in case of shear forces.
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Company:	Zenith Engineers	Page:	9
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP3x5	Date:	9/5/2022
Fastening point:	RFXBP3x5 post base for RFC238P		

7 Anchor plate and concrete bearing stress check

	Load	Capacity	Utilization [%]	Status
Concentric Compression	N/A	N/A	N/A	N/A
Concrete bearing	2,762 [psi]	2,762 [psi]	100	OK
Tension Interface	1,174.84 [in.lb/in.]	2,025.00 [in.lb/in.]	59	ОК
Uniaxial Moment (Strong Axis)	556.37 [in.lb/in.]	2,025.00 [in.lb/in.]	28	ОК
Uniaxial Moment (Weak Axis)	1,416.20 [in.lb/in.]	2,025.00 [in.lb/in.]	70	ОК

7.1 Concrete bearing check (per AISC DG1, section 3.1.1)

$$\begin{split} & A_1 &= B \cdot N \\ & A_2 &= L \cdot W \\ & f_{pu(max)} = \varphi \left(0.85 f_c \sqrt{\frac{A_2}{A_1}} \right), \ \sqrt{\frac{A_2}{A_1}} \leq 2 \\ & f_{pu} &= f_{pu(max)} \end{split}$$

Variables

B [in.]	N [in.]	L [in.]	W [in.]
3.375	5.000	13.684	9.237
f _c ' [psi]	φ	P _u [lb]	M _u [in.lb]
2,500	0.650	0	0

Calculations

A_{1} [in. ²]	$A_{2}[in.^{2}]$
16.88	126.40

Results

f _{pu} [psi]	f _{pu(max)} [psi]
2,762	2,762

www.hilti.com

Company:	Zenith Engineers	Page:	10
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP3x5	Date:	9/5/2022
Fastening point:	RFXBP3x5 post base for RFC238P		

7.2 Plate bending (Strong Axis), Compression (per AISC DG1, sections 3.3 and AISC's Engineering Journal, Volume 51, No. 4)

$$\begin{array}{ll} A_{1} & = B \cdot N \\ A_{2} & = L \cdot W \\ f_{pu(max)} &= \phi \left(0.85 f_{c} \sqrt{\frac{A_{2}}{A_{1}}} \right), \ \sqrt{\frac{A_{2}}{A_{1}}} \leq 2 \\ m & = \frac{N \cdot 0.95 d}{2} \\ n & = \frac{B \cdot 0.95 b_{f}}{2} \\ M_{pl1} & = C_{r} \cdot \frac{x}{b_{eff}} \\ \phi \ M_{n} & = \phi \cdot F_{y} \cdot \frac{t_{p}^{2}}{4} \\ M_{pl1} & \leq \phi \ M_{n} \end{array}$$

Variables

B [in.]	N [in.]	L [in.]	W [in.]	d [in.]	b _f [in.]
3.375	5.000	13.684	9.237	1.850	1.850
F _v [psi]	φ	t _p [in.]	P _u [lb]	M _u [in.lb]	
36,000	0.900	0.500	0	10,500	
Calculations					
A_{1} [in. ²]	A_{2} [in. ²]	f _{pu(max)} [psi]	m [in.]	n [in.]	
16.88	126.40	2,762	1.621	0.809	
f _{pu} [psi]	C _r [lb]	x [in.]	b _{eff} [in.]	M _{pl1} [in.lb/in.]	
2,762	4,840	0.575	5.000	556.37	
Results					
M _n [in.lb/in.]	φ	♦ M _n [in.lb/in.]	M _{pl1} [in.lb/in.]		
2,250.00	0.900	2,025.00	556.37	-	

www.hilti.com

Company:	Zenith Engineers	Page:	11
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP3x5	Date:	9/5/2022
Fastening point:	RFXBP3x5 post base for RFC238P		

7.3 Plate bending (Weak Axis), Compression (per AISC DG1, sections 3.3 and AISC's Engineering Journal, Volume 51, No. 4)

$$\begin{array}{ll} A_{1} & = B \cdot N \\ A_{2} & = L \cdot W \\ f_{pu(max)} &= \phi \left(0.85 f_{c} \sqrt{\frac{A_{2}}{A_{1}}} \right), \ \sqrt{\frac{A_{2}}{A_{1}}} \leq 2 \\ m & = \frac{N \cdot 0.95 d}{2} \\ n & = \frac{B \cdot 0.95 b_{f}}{2} \\ n_{pl2} & = C_{r} \cdot \frac{x}{b_{eff}} \\ \phi \ M_{n} & = \phi \cdot F_{y} \cdot \frac{t_{p}^{2}}{4} \\ M_{pl2} & \leq \phi \ M_{n} \end{array}$$

Variables

B [in.]	N [in.]	L [in.]	W [in.]	d [in.]	b _f [in.]
3.375	5.000	13.684	9.237	1.850	1.850
F _y [psi]	φ	t _p [in.]	P _u [lb]	M _u [in.lb]	
36,000	0.900	0.500	0	10,500	
Calculations					
A_{1} [in. ²]	A_{2} [in. ²]	f _{pu(max)} [psi]	m [in.]	n [in.]	
16.88	126.40	2,762	1.621	0.809	
f _{pu} [psi]	C _r [lb]	x [in.]	b _{eff} [in.]	M _{pl2} [in.lb/in.]	
2,762	1,569	1.621	1.796	1,416.20	
Results					
M _n [in.lb/in.]	φ	φ M _n [in.lb/in.]	M _{pl2} [in.lb/in.]		
2,250.00	0.900	2,025.00	1,416.20	-	

www.hilti.com

Company:	Zenith Engineers	Page:	12
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP3x5	Date:	9/5/2022
Fastening point:	RFXBP3x5 post base for RFC238P		

7.4 Plate bending, tension (per AISC DG1, sections 3.2, 3.3)

m	$=\frac{N-0.95d}{2}$
n	$=\frac{B-0.95b_{f}}{2}$
M _{pl}	$= \frac{T_u \cdot x}{b_{eff}}$
φM _n	$= \phi \cdot F_y \cdot \frac{t_p^2}{4}$
${\sf M}_{\sf pl}$	$\leq \phi M_n$

Variables

B [in.]	N [in.]	d [in.]	b _f [in.]	F _y [psi]
3.375	5.000	1.850	1.850	36,000
φ	t _p [in.]	P _u [lb]	M _u [in.lb]	
 0.900	0.500	0	10,500	•

Calculations

m [in.]	n [in.]		
1.621	0.809		
T _u [lb]	x [in.]	b _{eff} [in.]	
2,058	0.963	1.687	
Results			
M _n [in.lb/in.]	φ	φ M _n [in.lb/in.]	M _{pl} [in.lb/in.]
2,250.00	0.900	2,025.00	1,174.84

www.hilti.com

Zenith Engineers	Page:	13
22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Concrete Mounted - BP3x5	Date:	9/5/2022
RFXBP3x5 post base for RFC238P		
	Zenith Engineers 22320 Foothill Blvd, Suite 600, Hayward, CA 94541 415 619 6000 415 500 9583 Concrete Mounted - BP3x5 RFXBP3x5 post base for RFC238P	22320 Foothill Blvd, Suite 600, Hayward, CA 94541 Specifier: 415 619 6000 415 500 9583 E-Mail: Concrete Mounted - BP3x5 Date:

8 Installation data

Profile: Square HSS (AISC), ; (L x W x T) = 1.850 in. x 1.850 in. x 0.100 in.

Hole diameter in the fixture (pre-setting) : $d_f = 0.438$ in.

Hole diameter in the fixture (through fastening) : $d_f = 0.500$ in.

Plate thickness (input): 0.500 in.

Drilling method: Hammer drilled

Cleaning: Compressed air cleaning of the drilled hole according to instructions for use is required

Anchor type and diameter: HIT-HY 200 V3 + HIT-Z-R 3/8 Item number: 2018452 HIT-Z-R 3/8" x 5 1/8" (element) / 2334276 HIT-HY 200-R V3 (adhesive) Maximum installation torque: 354 in.lb Hole diameter in the base material: 0.438 in. Hole depth in the base material: 3.750 in. Minimum thickness of the base material: 6.000 in.

3/8 Hilti HIT-Z Stainless steel non-cleaning bonded expansion anchor with Hilti HIT-HY 200 V3 Safe Set System

8.1 Recommended accessories

Drilling	Cleaning	Setting
Suitable Rotary Hammer	• -	 Dispenser including cassette and mixer
Properly sized drill bit		Torque wrench

y ▲ 2.500 2.500 0.750 3 687 0.000 .875 687 1 750 0 0.658 3.684 0.658

Coordinates Anchor in.

Anchor	x	У	с _{-х}	c _{+x}	C _{-y}	c _{+y}
1	-1.842	-0.938	5.000	-	5.000	-
2	1.842	-0.938	8.684	-	5.000	-
3	-1.842	0.938	5.000	-	6.875	-
4	1.842	0.938	8.684	-	6.875	-

ΖΣ

www.hilti.com

Company:	Zenith Engineers	Page:	14
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP3x5	Date:	9/5/2022
Fastening point:	RFXBP3x5 post base for RFC238P		

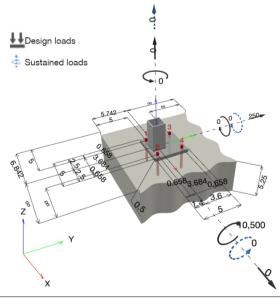
9 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.ł	nilti.com
-------	-----------

Company:	Zenith Engineers	Page:	1
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 edge	Date:	9/5/2022
Fastening point:	RFXBP5x5 edge post base for RFC238P		
Pastening point.	NI ADF 5X5 edge post base for NF C250F		

Specifier's comments: Install per manufacturer's recommendations


1 Anchor Design

1.1 Input data

Anchor type and diameter:	HIT-HY 200 V3 + HIT-Z-R 3/8		
Item number:	2018451 HIT-Z-R 3/8" x 4 3/8" (element) / 2334276 HIT-HY 200-R V3 (adhesive)		
Effective embedment depth:	$h_{ef,act}$ = 3.000 in. ($h_{ef,limit}$ = - in.)		
Material:	A4		
Evaluation Service Report:	ESR-4868	Zenith Notes:	
Issued I Valid:	11/1/2021 11/1/2022	1. Depth of concrete shall not be less than 5.25".	
Proof:	Design Method ACI 318-19 / Chem	2. Edge distance of concrete from center of anchor	
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.	bolt shall not be less than 5" on all sides. 3. Minimum compressive strength of concrete shall	
Anchor plate ^{CBFEM} :	$I_x \times I_y \times t = 5.000$ in. x 5.000 in. x 0.500 in.;	not be less than 2,500psi.	
Profile:	Square HSS (AISC), ; (L x W x T) = 1.850 in. x 1.850 in. x 0.100 in.		
Base material:	cracked concrete, 2500, fc' = 2,500 psi; h = 5.250 in., Temp. short/long: 32/32 °F		
Installation:	hammer drilled hole, Installation condition: Dry		
Reinforcement:	tension: not present, shear: not present; no supplemental splitting reinforcement present		
	edge reinforcement: none or < No. 4 bar		

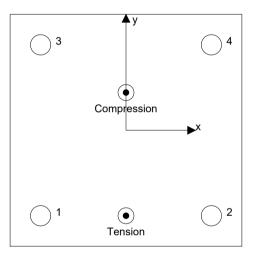
^{CBFEM} - The anchor calculation is based on a component-based Finite Element Method (CBFEM)

Geometry [in.] & Loading [lb, in.lb]

www.hilti.com

Company:	Zenith Engineers	Page:	2
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 edge	Date:	9/5/2022
Fastening point:	RFXBP5x5 edge post base for RFC238P		

1.1.1 Load comb	ination and design results			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Outward	$\begin{split} N &= 0; \ V_x = 0; \ V_y = -250; \\ M_x &= 10,500; \ M_y = 0; \ M_z = 0; \\ N_{sus} &= 0; \ M_{x,sus} = 0; \ M_{y,sus} = 0; \end{split}$	no	66
2	<u>Inward</u>	$\frac{N = 0; V_x = 0; V_y = 250;}{M_x = -10,500; M_y = 0; M_z = 0;}$ $\frac{N_{sus} = 0; M_{x,sus} = 0; M_{y,sus} = 0;}{N_{sus} = 0; M_{y,sus} = 0;}$	<u>no</u>	<u>100</u>


1.2 Load case/Resulting anchor forces

Controlling load case: 2 Inward

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	2,021	59	10	58
2	2,021	59	-10	58
3	-0	67	-1	67
4	-0	67	1	67

resulting tension force in (x/y)=(-0.000/-1.842): 4,042 [lb] resulting compression force in (x/y)=(0.000/0.814): 4,100 [lb]

Anchor forces are calculated based on a component-based Finite Element Method (CBFEM)

1.3 Tension load

	Load N _{ua} [lb]	Capacity ଦ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	2,021	4,749	43	OK
Pullout Strength*	2,021	5,169	40	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	4,042	4,046	100	OK

* highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company:	Zenith Engineers	Page:	3
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 edge	Date:	9/5/2022
Fastening point:	RFXBP5x5 edge post base for RFC238P		

1.3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-4868
φ N _s	$_{a} \ge N_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.08	94,200

Calculations

N_{sa} [lb] 7,306

Results

N _{sa} [lb]	φ _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
7,306	0.650	4,749	2,021

1.3.2 Pullout Strength

$N_{pn} = N_p \lambda_a$	refer to ICC-ES ESR-4868
$\phi N_{pn} \ge N_{ua}$	ACI 318-19 Table 17.5.2

Variables

λ _a	N _p [lb]	
1.000	7,952	
Calculations		

N_{pn} [lb] 7,952

Results

N _{pn} [lb]	ϕ_{concrete}	φ N _{pn} [lb]	N _{ua} [lb]
7,952	0.650	5,169	2,021

www.hilti.com

Company:	Zenith Engineers	Page:	4
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 edge	Date:	9/5/2022
Fastening point:	RFXBP5x5 edge post base for RFC238P		

1.3.3 Concrete Breakout Failure

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
$\phi N_{cbg} \ge N_{ua}$	ACI 318-19 Table 17.5.2
A_{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b) A_{Nc0} = 9 h_{ef}^2	ACI 318-19 Eq. (17.6.2.1.4)
	X01010102q. (11.0.2.1.1)
$\Psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5 h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\begin{split} \psi_{cp,N} &= MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \leq 1.0 \\ N_{b} &= k_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5} \end{split}$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{\rm b} = K_{\rm c} \lambda_{\rm a} \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{\text{c,N}}$
3.000	0.000	0.000	5.000	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
8.100	17	1.000	2,500	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{\text{ec2,N}}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]	
114.16	81.00	1.000	1.000	1.000	1.000	4,417	
Results							
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]				
6,224	0.650	4,046	4,042	-			

www.hilti.com

Company:	Zenith Engineers	Page:	5
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 edge	Date:	9/5/2022
Fastening point:	RFXBP5x5 edge post base for RFC238P		

1.4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_{\rm V} = V_{\rm ua} / \Phi V_{\rm n}$	Status
Steel Strength*	67	2,630	3	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	250	12,280	3	OK
Concrete edge failure in direction x-**	250	2,048	13	OK

* highest loaded anchor **anchor group (relevant anchors)

1.4.1 Steel Strength

V_{sa}	= ESR value	refer to ICC-ES ESR-4868
	eel ≥ V _{ua}	ACI 318-19 Table 17.5.2

Variables

$\frac{A_{se,V}\left[in.^2\right]}{0.08}$	f _{uta} [psi] 94,200	_	
Calculations			
V _{sa} [lb] 4,384			
Results			
V _{sa} [lb]	ϕ_{steel}	φ V _{sa} [lb]	V _{ua} [lb]
4,384	0.600	2,630	67

www.hilti.com

Company:	Zenith Engineers	Page:	6
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 edge	Date:	9/5/2022
Fastening point:	RFXBP5x5 edge post base for RFC238P		

1.4.2 Pryout Strength (Concrete Breakout Strength controls)

$V_{cpg} = K_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-19 Eq. (17.7.3.1b)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{\text{ef}}}{c_{ac}}\right) \leq 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{\rm b} = K_{\rm c} \lambda_{\rm a} \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	3.000	0.000	0.000	5.000
$\Psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
1.000	8.100	17	1.000	2,500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
160.88	81.00	1.000	1.000	1.000	1.000	4,417
Results						
V _{cpg} [lb]	ϕ_{concrete}	φ V _{cpg} [lb]	V _{ua} [lb]	_		
17,544	0.700	12,280	250	-		

www.hilti.com

Company:	Zenith Engineers	Page:	7
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 edge	Date:	9/5/2022
Fastening point:	RFXBP5x5 edge post base for RFC238P		

1.4.3 Concrete edge failure in direction x-

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} \Psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1b)
$\phi V_{cbg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Vc} see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
$ \Psi_{ec,V} = \left(\frac{1}{1 + \frac{e_v}{1.5c_{a1}}}\right) \le 1.0 $	ACI 318-19 Eq. (17.7.2.3.1)
$\Psi_{\text{ed},V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5 c_{a1}} \right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$\psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-19 Eq. (17.7.2.6.1)
$V_{b} = \left(7\left(\frac{I_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	$\Psi_{\text{c,V}}$	h _a [in.]
5.000	5.000	0.065	1.000	5.250
l _e [in.]	λ _a	d _a [in.]	f _c [psi]	$\Psi_{\text{ parallel},V}$
3.000	1.000	0.375	2,500	1.000

Calculations

A _{Vc} [in. ²]	A _{Vc0} [in. ²]	$\psi_{\text{ ec,V}}$	$\psi_{\text{ed},\text{V}}$	$\psi_{h,V}$	V _b [lb]
84.97	112.50	0.991	0.900	1.195	3,632
Results					
V _{cbg} [lb]	ϕ_{concrete}	φ V _{cbg} [lb]	V _{ua} [lb]	_	
2,925	0.700	2,048	250	-	

β _N	ion and shear load β.,	ς, μει Ασί στο-τι	Utilization $\beta_{N,V}$ [%]	Status
0.999	0.122	1.000	94	OK

www.hilti.com

Company: Address:	Zenith Engineers 22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Page: Specifier:	8
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design: Fastening point:	Concrete Mounted - BP5x5 edge RFXBP5x5 edge post base for RFC238P	Date:	9/5/2022

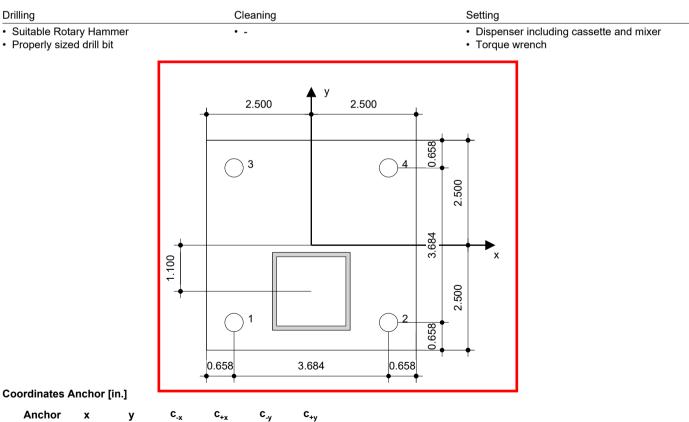
1.6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates as per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Attention! In case of compressive anchor forces a buckling check as well as the proof of the local load transfer into and within the base material (incl. punching) has to be done separately.
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.
- The anchor design methods in PROFIS Engineering require rigid anchor plates, as per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means that the anchor plate should be sufficiently rigid to prevent load re-distribution to the anchors due to elastic/plastic displacements. The user accepts that the anchor plate is considered close to rigid by engineering judgment."

www.hilti.com

Company:	Zenith Engineers	Page:	9
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 edge	Date:	9/5/2022
Fastening point:	RFXBP5x5 edge post base for RFC238P		
	• •		

1.7 Installation data


Profile: Square HSS (AISC), ; (L x W x T) = 1.850 in. x 1.850 in. x 0.100 in.

Hole diameter in the fixture (pre-setting) : $d_f = 0.438$ in. Hole diameter in the fixture (through fastening) : $d_f = 0.500$ in. Plate thickness (input): 0.500 in. Anchor type and diameter: HIT-HY 200 V3 + HIT-Z-R 3/8 Item number: 2018451 HIT-Z-R 3/8" x 4 3/8" (element) / 2334276 HIT-HY 200-R V3 (adhesive) Maximum installation torque: 354 in.lb Hole diameter in the base material: 0.438 in. Hole depth in the base material: 3.000 in. Minimum thickness of the base material: 5.250 in.

Drilling method: Hammer drilled Cleaning: Compressed air cleaning of the drilled hole according to instructions for use is required

3/8 Hilti HIT-Z Stainless steel non-cleaning bonded expansion anchor with Hilti HIT-HY 200 V3 Safe Set System

1.7.1 Recommended accessories

Anchor	x	У	C _{-x}	c _{+x}	C_y	c _{+y}
1	-1.842	-1.842	5.000	-	5.000	-
2	1.842	-1.842	8.684	-	5.000	-
3	-1.842	1.842	5.000	-	8.684	-
4	1.842	1.842	8.684	-	8.684	-

www.hilti.com

Company:	Zenith Engineers	Page:	10
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 edge	Date:	9/5/2022
Fastening point:	RFXBP5x5 edge post base for RFC238P		

2 Anchor plate design

2.1 Input data	
Anchor plate:	Shape: Rectangular $l_x x l_y x t = 5.000$ in x 5.000 in x 0.500 in
	Calculation: CBFEM Material: ASTM A36; F _y = 36,000 psi; ε _{lim} = 5.00%
Anchor type and size:	HIT-HY 200 V3 + HIT-Z-R 3/8, h _{ef} = 3.000 in
Anchor stiffness:	The anchor is modeled considering stiffness values determined from load displacement curves tested in an independent laboratory. Please note that no simple replacement of the anchor is possible as the anchor stiffness has a major impact on the load distribution results.
Design method:	AISC and LRFD-based design using component-based FEM
Stand-off installation:	e _b = 0.000 in (No stand-off); t = 0.500 in
Profile:	Custom; (L x W x T x FT) = 1.850 in x 1.850 in x 0.100 in x - Material: ASTM A500 Gr.B Rect; F _y = 46,000 psi; ε _{lim} = 5.00%
	Eccentricity x: 0.000 in Eccentricity y: -1.100 in
Base material:	Cracked concrete; 2500; f _{c,cyl} = 2,500 psi; h = 5.250 in
Welds (profile to anchor plate):	Type of redistribution: Plastic Material: E70xx
Mesh size:	Number of elements on edge: 8 Min. size of element: 0.394 in Max. size of element: 1.969 in

2.2 Summary

	Description	Pro	file		Anchor plate		Concrete [%]
		σ_{Ed} [psi]	ε _{ΡΙ} [%]	σ_{Ed} [psi]	ε _{ΡΙ} [%]	Hole bearing [%]	
1	Outward	33,708	0.00	23,642	0.00	1	<u>18</u>
2	Inward	38,605	0.00	19,478	0.00	1	9

2.3 Anchor plate classification

Results below are displayed for the decisive load combinations: Outward

Anchor tension forces	Equivalent rigid anchor plate (CBFEM)	Component-based Finite Element Method (CBFEM) anchor plate design
Anchor 1	-1 lb	0 lb
Anchor 2	-1 lb	0 lb
Anchor 3	1,451 lb	1,328 lb
Anchor 4	1,451 lb	1,328 lb

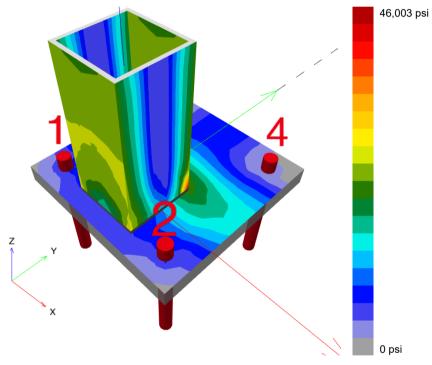
User accepted to consider the selected anchor plate as rigid by his/her engineering judgement. This means the anchor design guidelines can be applied.

2.4 Profile/Stiffeners/Plate

Profile and stiffeners are verified at the level of the steel to concrete connection. The connection design does not replace the steel design for critical cross sections, which should be performed outside of PROFIS Engineering.

2.4.1 Equivalent stress and plastic strain

Part	Load combination	Material	f _y [psi]	ε _{lim} [%]	$\sigma_{\sf Ed}$ [psi]	ε _{ΡΙ} [%]	Status
Plate	Outward	ASTM A36	36,000	5.00	23,642	0.00	OK

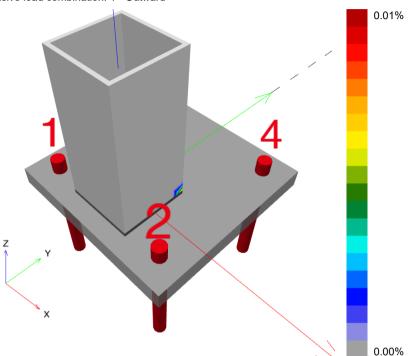


www.hilti.com

Company: Address: Phone I Fax: Design: Fastening point:	223 413 Co	Zenith Engineers 22320 Foothill Blvd, Suite 600, Hayward, CA 94541 415 619 6000 415 500 9583 Concrete Mounted - BP5x5 edge RFXBP5x5 edge post base for RFC238P		Page: Specifier: E-Mail: Date:	irina@z	11 enithengineers.com 9/5/2022	
Part	Load combination	Material	f _y [psi]	ε _{lim} [%]	σ_{Ed} [psi]	ε _{ΡΙ} [%]	Status
Profile	Outward	ASTM A500 Gr.B Rect	46,000	5.00	33,708	0.00	OK
Profile	Outward	ASTM A500 Gr.B Rect	46,000	5.00	33,698	0.00	OK
Profile	Outward	ASTM A500 Gr.B Rect	46,000	5.00	25,505	0.00	OK
Profile	Outward	ASTM A500 Gr.B Rect	46,000	5.00	39,035	0.00	ОК

2.4.1.1 Equivalent stress

Results below are displayed for the decisive load combination: 1 - Outward



www.hilti.com

Company:	Zenith Engineers	Page:	12
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 edge	Date:	9/5/2022
astening point:	RFXBP5x5 edge post base for RFC238P		
0	0	Date:	

2.4.1.2 Plastic strain

Results below are displayed for the decisive load combination: 1 - Outward

2.4.2 Plate hole bearing resistance, AISC 360-16 Section J3

Decisive load combination: 1 - Outward

Equations

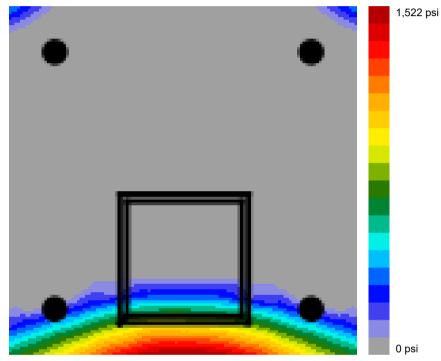
R _n	$= min(1.2 \ l_c \ t \ F_u \ , \ 2.4 \ d \ t \ F_u) (AISC \ 36016 \ J36a, \ c)$
ΦR_n	= 0.75 R _n
V	≤ ΦR _n

Variables

	l _c [in]	t [in]	F _u [psi]	d [in]	R _n [lb]
Anchor 1	3.247	0.500	58,000	0.375	26,100
Anchor 2	3.247	0.500	58,000	0.375	26,100
Anchor 3	0.440	0.500	58,000	0.375	15,316
Anchor 4	0.440	0.500	58,000	0.375	15,316

Results

	V [lb]	Φ R _n [lb]	Utilization [%]	Status
Anchor 1	56	19,575	1	OK
Anchor 2	56	19,575	1	OK
Anchor 3	69	11,487	1	OK



Company: Address: Phone I Fax: Design: Fastening point:	Idress:22320 Foothill Blvd, Suite 600, Hayward, CA 94541ione I Fax:415 619 6000 415 500 9583esign:Concrete Mounted - BP5x5 edge		Page: Specifier: E-Mail: Date:	13 irina@zenithengineers.com 9/5/2022
Anchor 4	V [lb] 69	ΦR _n [lb] 11.487	Utilization [%]	Status OK

2.5 Concrete

Decisive load combination: 1 - Outward

2.5.1 Compression in concrete under the anchor plate

2.5.2 Concrete block compressive strength resistance check, AISC 360-16 Section J8

Equations

Fp	= $\Phi f_{p,max}$				
f _{p,max}	= 0.85 fc'	$\sqrt{(\frac{A_2}{A_1})}$) ≤ 1.7 f _c ; √($\frac{A_2}{A_1}) \le 2$	
σ	$= \frac{N}{A_1}$				
Utilization	$= \frac{\sigma}{F_p}$				
Variables					
1	N [lb]	f _c ' [psi]	Φ	A ₁ [in²]	A ₂ [in ²]
2	2,735	2,500	0.65	5.61	118.97

www.hilti.com

Company:	Zenith Engineers	Page:	14
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 edge	Date:	9/5/2022
Fastening point:	RFXBP5x5 edge post base for RFC238P		

Results

Load combination	F _p [psi]	σ [psi]	Utilization [%]	Status			
Outward	2,762	488	18	OK			
2.6 Symbol explanation							
A ₁	Loaded area of concrete						
A ₂	Supporting area						
d Elim	Nominal diameter of the bolt Limit plastic strain						
ε _{Pl}	Plastic strain from CBFEM result	s					
f _c	Concrete compressive strength						
f _c '	Concrete compressive strength						
Fu	Specified minimum tensile streng	gth of the connected mate	erial				
Fp	Concrete block design bearing s	Concrete block design bearing strength					
f _{p,max}	Concrete block design bearing strength maximum						
fy	Yield strength						
lc	Clear distance, in the direction of the force, between the edge of the hole and the edge of the adjacent hole or edge of the material						
Ν	Resulting compression force						
σ	Average stress in concrete						
σ_{Ed}	Equivalent stress						
Φ	Resistance factor						
ΦR_n	Factored resistance						
t V	Thickness of the anchor plate Resultant of shear forces Vy, Vz	in bolt.					

2.7 Warnings

- By using the CBFEM calculation functionality of PROFIS Engineering you may act outside the applicable design codes and your specified anchor plate may not behave rigid. Please, validate the results with a professional designer and/or structural engineer to ensure suitability and adequacy for your specific jurisdiction and project requirements.
- The anchor is modeled considering stiffness values determined from load displacement curves tested in an independent laboratory. Please note that no simple replacement of the anchor is possible as the anchor stiffness has a major impact on the load distribution results.

www.hilti.com

Company:	Zenith Engineers	Page:	15
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 edge	Date:	9/5/2022
Fastening point:	RFXBP5x5 edge post base for RFC238P		

3 Summary of results

Design of the anchor plate, anchors, welds and other elements are based on CBFEM (component based finite element method) and AISC.

	Load combination	Max. utilization	Status
Anchors	Inward	100%	OK
Anchor plate	Outward	66%	OK
Concrete	Outward	18%	OK
Profile	Outward	74%	OK

Fastening meets the design criteria!

ΖΣ

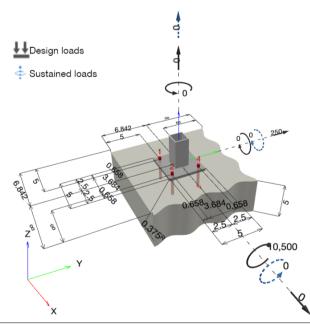
www.hilti.com			
Company:	Zenith Engineers	Page:	
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 edge	Date:	9/5/2022
Fastening point:	RFXBP5x5 edge post base for RFC238P		

4 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not
 use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in
 each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or
 damaged data or programs, arising from a culpable breach of duty by you.

www.hilti.com	l
---------------	---

Company:	Zenith Engineers	Page:	1
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 center	Date:	9/5/2022
Fastening point:	RFXBP5x5 post base centered for RFC238P		


Specifier's comments: Install per manufacturer's recommendations

1 Input data

•					
Anchor type and diameter:	HIT-HY 200 V3 + HIT-Z-R 3/8				
Item number:	2018451 HIT-Z-R 3/8" x 4 3/8" (element) / 2334276 HIT-HY 200-R V3 (adhesive)				
Effective embedment depth:	$h_{ef,act}$ = 2.750 in. ($h_{ef,limit}$ = - in.)				
Material:	A4				
Evaluation Service Report:	ESR-4868	Zenith Notes:			
Issued I Valid:	11/1/2021 11/1/2022	1. Depth of concrete shall not be less than 5".			
Proof:	Design Method ACI 318-19 / Chem	2. Edge distance of concrete from center of anchor			
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.375 in.	bolt shall not be less than 5" on all sides. 3. Minimum compressive strength of concrete shall			
Anchor plate ^R :	l _x x l _y x t = 5.000 in. x 5.000 in. x 0.375 in.;	not be less than 2,500psi.			
Profile:	Square HSS (AISC), ; (L x W x T) = 1.850 in. x 1.850) in. x 0.100 in.			
Base material:	cracked concrete, 2500, f_c ' = 2,500 psi; h = 5.000 in.	, Temp. short/long: 32/32 °F			
Installation:	hammer drilled hole, Installation condition: Dry				
Reinforcement:	tension: not present, shear: not present; no supplem	ental splitting reinforcement present			
	edge reinforcement: none or < No. 4 bar				

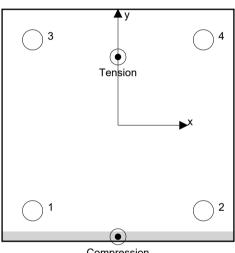
^R - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

www.hilti.com

Company:	Zenith Engineers	Page:	2
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 center	Date:	9/5/2022
Fastening point:	RFXBP5x5 post base centered for RFC238P		

1.1 Load combin	ation and design results			
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Outward	$\begin{split} N &= 0; \ V_x = 0; \ V_y = -250; \\ M_x &= 10,500; \ M_y = 0; \ M_z = 0; \\ N_{sus} &= 0; \ M_{x,sus} = 0; \ M_{y,sus} = 0; \end{split}$	no	70
2	Inward	$\frac{N = 0; V_x = 0; V_y = 250;}{M_x = -10,500; M_y = 0; M_z = 0;}$ $\frac{N_{sus} = 0; M_{x,sus} = 0; M_{y,sus} = 0;}{N_{sus} = 0; M_{y,sus} = 0;}$	<u>no</u>	<u>70</u>


2 Load case/Resulting anchor forces

Controlling load case: 2 Inward

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

`	, - 1	/		
Anchor	Tension force	Shear force	Shear force x	Shear force y
1	136	63	0	-63
2	136	63	0	-63
3	1,219	63	0	-63
4	1,219	63	0	-63
max. concrete co max. concrete co resulting tension resulting compres	0.03 [‰] 2,762 [psi] 2,710 [lb] 2,710 [lb]			

Compression

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ଦ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	1,219	4,749	26	OK
Pullout Strength*	1,219	5,169	24	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	2,710	3,885	70	OK

* highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company:	Zenith Engineers	Page:	3
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 center	Date:	9/5/2022
Fastening point:	RFXBP5x5 post base centered for RFC238P		

3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-4868
φ N _{sa}	$_{a} \geq N_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.08	94,200

Calculations

N_{sa} [lb] 7,306

Results

 N _{sa} [lb]	ϕ_{steel}	φ N _{sa} [lb]	N _{ua} [lb]
7,306	0.650	4,749	1,219

3.2 Pullout Strength

$N_{pn} = N_p \lambda_a$	refer to ICC-ES ESR-4868
$\phi N_{pn} \ge N_{ua}$	ACI 318-19 Table 17.5.2

Variables

λ_{a}	N _p [lb]
1.000	7,952
Calculations	

N_{pn} [lb] 7,952

Results

N _{pn} [lb]	∲ _{concrete}	φ N _{pn} [lb]	N _{ua} [lb]
7,952	0.650	5,169	1,219

www.hilti.com

Company:	Zenith Engineers	Page:	4
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 center	Date:	9/5/2022
Fastening point:	RFXBP5x5 post base centered for RFC238P		

3.3 Concrete Breakout Failure

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
$\phi N_{cbg} \ge N_{ua}$	ACI 318-19 Table 17.5.2
A_{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b) A_{Nc0} = 9 h_{ef}^2	ACI 318-19 Eq. (17.6.2.1.4)
	,
$\Psi_{ec,N} = \left(\frac{1}{1 + \frac{2e_N}{3h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\begin{split} \psi_{cp,N} &= MAX\!\left(\!\frac{c_{a,min}}{c_{ac}},\frac{1.5h_{ef}}{c_{ac}}\!\right) \leq 1.0\\ N_{b} &= k_{c} \ \lambda_{a} \ \sqrt{f_{c}} \ h_{ef}^{1.5} \end{split}$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{b} = K_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{c,N}$
2.750	0.000	1.473	5.000	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
7.050	17	1.000	2,500	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
142.42	68.06	1.000	0.737	1.000	1.000	3,876
Results						
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]			
5,977	0.650	3,885	2,710	-		

www.hilti.com

Company:	Zenith Engineers	Page:	5
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 center	Date:	9/5/2022
Fastening point:	RFXBP5x5 post base centered for RFC238P		

4 Shear load

	Load V _{ua} [lb]	Capacity Ϙ V _n [lb]	Utilization $\beta_{\rm V} = V_{\rm ua} / \Phi V_{\rm n}$	Status
Steel Strength*	63	2,630	3	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	250	11,356	3	ОК
Concrete edge failure in direction y-**	250	1,981	13	OK

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= ESR value	refer to ICC-ES ESR-4868
φ V _{ste}	$_{el} \geq V_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,V} [in. ²]	f _{uta} [psi]
0.08	94,200

Calculations

V_{sa} [lb] 4,384

Results

V _{sa} [lb]	φ _{steel}	φ V _{sa} [lb]	V _{ua} [lb]
4,384	0.600	2,630	63

www.hilti.com

Company:	Zenith Engineers	Page:	6
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 center	Date:	9/5/2022
Fastening point:	RFXBP5x5 post base centered for RFC238P		

4.2 Pryout Strength (Concrete Breakout Strength controls)

$V_{cpg} = K_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-19 Eq. (17.7.3.1b)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{\text{ef}}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{b} = K_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	2.750	0.000	0.000	5.000
$\Psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
1.000	7.050	17	1.000	2,500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]	
142.42	68.06	1.000	1.000	1.000	1.000	3,876	
Results							
V _{cpg} [lb]	ϕ_{concrete}	φ V _{cpg} [lb]	V _{ua} [lb]	_			
16,222	0.700	11,356	250	-			

www.hilti.com

Company:	Zenith Engineers	Page:	7
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 center	Date:	9/5/2022
Fastening point:	RFXBP5x5 post base centered for RFC238P		

4.3 Concrete edge failure in direction y-

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-19 Eq. (17.7.2.1b)
$\phi V_{cbg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Vc} see ACI 318-19, Section 17.7.2.1, Fig. R 17.7.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-19 Eq. (17.7.2.1.3)
$ \Psi_{ec,V} = \left(\frac{1}{1 + \frac{e_v}{1.5c_{a1}}}\right) \le 1.0 $	ACI 318-19 Eq. (17.7.2.3.1)
$\Psi_{\text{ed},V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5 c_{a1}} \right) \le 1.0$	ACI 318-19 Eq. (17.7.2.4.1b)
$\psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-19 Eq. (17.7.2.6.1)
$V_{b} = \left(7 \left(\frac{l_{e}}{d_{a}}\right)^{0.2} \sqrt{d_{a}}\right) \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-19 Eq. (17.7.2.2.1a)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	$\Psi_{c,V}$	h _a [in.]
5.000	5.000	0.000	1.000	5.000
l _e [in.]	λ _a	d _a [in.]	f _c [psi]	$\psi_{\text{ parallel},V}$
2.750	1.000	0.375	2,500	1.000

Calculations

A _{vc} [in. ²]	A _{Vc0} [in. ²]	$\psi_{\text{ ec,V}}$	$\psi_{\text{ed},\text{V}}$	$\psi_{h,V}$	V _b [lb]
80.92	112.50	1.000	0.900	1.225	3,569
Results					
V _{cbg} [lb]	ϕ_{concrete}	φ V _{cbg} [lb]	V _{ua} [lb]		
2,830	0.700	1,981	250		

5 Combined tension and shear loads, per ACI 318-19 section 17.8						
	β _N	β_V	ζ	Utilization $\beta_{N,V}$ [%]	Status	
_	0.698	0.126	5/3	59	OK	
β _N	$_{\rm V} = \beta_{\rm N}^{\zeta} + \beta_{\rm V}^{\zeta} <= 1$					

www.hilti.com

Company:	Zenith Engineers	Page:	8
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 center	Date:	9/5/2022
Fastening point:	RFXBP5x5 post base centered for RFC238P		

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- User is responsible for evaluating the hole bearing capacity in case of shear forces.
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Company:	Zenith Engineers	Page:	9
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 center	Date:	9/5/2022
Fastening point:	RFXBP5x5 post base centered for RFC238P		

7 Anchor plate and concrete bearing stress check

	Load	Capacity	Utilization [%]	Status
Concentric Compression	N/A	N/A	N/A	N/A
Concrete bearing	2,762 [psi]	2,762 [psi]	100	ОК
Tension Interface	724.35 [in.lb/in.]	1,139.06 [in.lb/in.]	64	ОК
Uniaxial Moment (Strong Axis)	303.45 [in.lb/in.]	1,139.06 [in.lb/in.]	27	ОК
Uniaxial Moment (Weak Axis)	828.55 [in.lb/in.]	1,139.06 [in.lb/in.]	73	ОК

7.1 Concrete bearing check (per AISC DG1, section 3.1.1)

$$\begin{split} & A_1 &= B \cdot N \\ & A_2 &= L \cdot W \\ & f_{pu(max)} = \varphi \left(0.85 f_c \cdot \sqrt{\frac{A_2}{A_1}} \right), \ \sqrt{\frac{A_2}{A_1}} \leq 2 \\ & f_{pu} &= f_{pu(max)} \end{split}$$

Variables

B [in.]	N [in.]	L [in.]	W [in.]
5.000	5.000	13.684	13.684
f _c ' [psi]	φ	P _u [lb]	M _u [in.lb]
2,500	0.650	0	0

Calculations

A_{1} [in. ²]	A_{2} [in. ²]
25.00	187.25

Results

f _{pu} [psi]	f _{pu(max)} [psi]
2,762	2,762

www.hilti.com

Company:	Zenith Engineers	Page:	10
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 center	Date:	9/5/2022
Fastening point:	RFXBP5x5 post base centered for RFC238P		

7.2 Plate bending (Strong Axis), Compression (per AISC DG1, sections 3.3 and AISC's Engineering Journal, Volume 51, No. 4)

$$\begin{array}{ll} A_1 &= B \cdot N \\ A_2 &= L \cdot W \\ f_{pu(max)} &= \varphi \left(0.85 f_c \sqrt{\frac{A_2}{A_1}} \right), \ \sqrt{\frac{A_2}{A_1}} \leq 2 \\ m &= \frac{N \cdot 0.95 d}{2} \\ n &= \frac{B \cdot 0.95 b_f}{2} \\ M_{pl1} &= C_r \cdot \frac{x}{b_{eff}} \\ \varphi \ M_n &= \varphi \cdot F_y \cdot \frac{t_p^2}{4} \\ M_{pl1} &\leq \varphi \ M_n \end{array}$$

Variables

B [in.]	N [in.]	L [in.]	W [in.]	d [in.]	b _f [in.]
5.000	5.000	13.684	13.684	1.850	1.850
F _v [psi]	φ	t _p [in.]	P _u [lb]	M _u [in.lb]	
36,000	0.900	0.375	0	10,500	
Calculations					
A ₁ [in. ²]	A_{2} [in. ²]	f _{pu(max)} [psi]	m [in.]	n [in.]	
25.00	187.25	2,762	1.621	1.621	
f _{pu} [psi]	C _r [lb]	x [in.]	b _{eff} [in.]	M _{pl1} [in.lb/in.]	
2,762	2,710	0.560	5.000	303.45	
Results					
M _n [in.lb/in.]	φ	∮ M _n [in.lb/in.]	M _{pl1} [in.lb/in.]		
1,265.62	0.900	1,139.06	303.45	-	

www.hilti.com

Company:	Zenith Engineers	Page:	11
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 center	Date:	9/5/2022
Fastening point:	RFXBP5x5 post base centered for RFC238P		

7.3 Plate bending (Weak Axis), Compression (per AISC DG1, sections 3.3 and AISC's Engineering Journal, Volume 51, No. 4)

$$\begin{array}{ll} A_{1} & = B \cdot N \\ A_{2} & = L \cdot W \\ f_{pu(max)} &= \phi \left(0.85 f_{c} \sqrt{\frac{A_{2}}{A_{1}}} \right), \ \sqrt{\frac{A_{2}}{A_{1}}} \leq 2 \\ m & = \frac{N \cdot 0.95 d}{2} \\ n & = \frac{B \cdot 0.95 b_{f}}{2} \\ n_{pl2} & = C_{r} \cdot \frac{x}{b_{eff}} \\ \phi \ M_{n} & = \phi \cdot F_{y} \cdot \frac{t_{p}^{2}}{4} \\ M_{pl2} & \leq \phi \ M_{n} \end{array}$$

Variables

B [in.]	N [in.]	L [in.]	W [in.]	d [in.]	b _f [in.]
5.000	5.000	13.684	13.684	1.850	1.850
F _v [psi]	φ	t _p [in.]	P _u [lb]	M _u [in.lb]	
36,000	0.900	0.375	0	10,500	
Calculations					
A_{1} [in. ²]	A_{2} [in. ²]	f _{pu(max)} [psi]	m [in.]	n [in.]	
25.00	187.25	2,762	1.621	1.621	
f _{pu} [psi]	C _r [lb]	x [in.]	b _{eff} [in.]	M _{pl2} [in.lb/in.]	
2,762	879	1.621	1.719	828.55	
Results					
M _n [in.lb/in.]	φ	∮ M _n [in.lb/in.]	M _{pl2} [in.lb/in.]		
1,265.62	0.900	1,139.06	828.55	=	

www.hilti.com

Company:	Zenith Engineers	Page:	12
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 center	Date:	9/5/2022
Fastening point:	RFXBP5x5 post base centered for RFC238P		

7.4 Plate bending, tension (per AISC DG1, sections 3.2, 3.3)

$$\begin{split} m &= \frac{N\text{-}0.95d}{2} \\ n &= \frac{B\text{-}0.95b_f}{2} \\ M_{pl} &= \frac{T_u \cdot x}{b_{eff}} \\ \varphi \; M_n &= \varphi \cdot F_y \cdot \frac{t_p^2}{4} \\ M_{pl} &\leq \varphi \; M_n \end{split}$$

Variables

 B [in.]	N [in.]	d [in.]	b _f [in.]	F _y [psi]
 5.000	5.000	1.850	1.850	36,000
φ	t _p [in.]	P _u [lb]	M _u [in.lb]	
 0.900	0.375	0	10,500	•

Calculations

m [in.]	n [in.]			
1.621	1.621			
T _u [lb]	x [in.]	b _{eff} [in.]		
1,219	0.963	1.621		
Results				
M _n [in.lb/in.]	φ	φ M _n [in.lb/in.]	M _{pl} [in.lb/in.]	
1,265.62	0.900	1,139.06	724.35	

www.hilti.com

Company:	Zenith Engineers	Page:	13
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 center	Date:	9/5/2022
Fastening point:	RFXBP5x5 post base centered for RFC238P		

8 Installation data

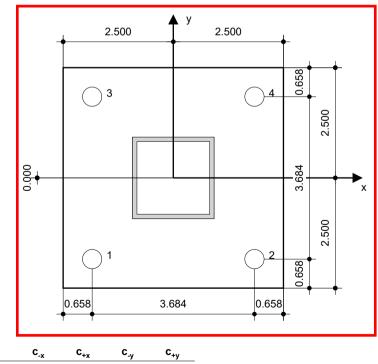
Profile: Square HSS (AISC), ; (L x W x T) = 1.850 in. x 1.850 in. x 0.100 in.

Hole diameter in the fixture (pre-setting) : $d_f = 0.438$ in.

Hole diameter in the fixture (through fastening) : $d_f = 0.500$ in.

Plate thickness (input): 0.375 in.

Drilling method: Hammer drilled


Cleaning: Compressed air cleaning of the drilled hole according to instructions for use is required

Anchor type and diameter: HIT-HY 200 V3 + HIT-Z-R 3/8 Item number: 2018451 HIT-Z-R 3/8" x 4 3/8" (element) / 2334276 HIT-HY 200-R V3 (adhesive) Maximum installation torque: 354 in.lb Hole diameter in the base material: 0.438 in. Hole depth in the base material: 2.750 in. Minimum thickness of the base material: 5.000 in.

3/8 Hilti HIT-Z Stainless steel non-cleaning bonded expansion anchor with Hilti HIT-HY 200 V3 Safe Set System

8.1 Recommended accessories

Drilling	Cleaning	Setting
Suitable Rotary Hammer	• -	 Dispenser including cassette and mixer
Properly sized drill bit		Torque wrench

Coordinates Anchor in.

Anchor	х	У	с _{-х}	C+x	c_y	c _{+y}
1	-1.842	-1.842	5.000	-	5.000	-
2	1.842	-1.842	8.684	-	5.000	-
3	-1.842	1.842	5.000	-	8.684	-
4	1.842	1.842	8.684	-	8.684	-

www.hilti.com

Company:	Zenith Engineers	Page:	14
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Mounted - BP5x5 center	Date:	9/5/2022
Fastening point:	RFXBP5x5 post base centered for RFC238P		

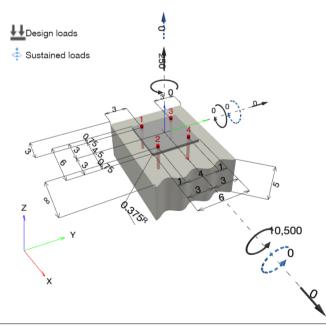
9 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.	hilti	.com
------	-------	------

Zenith Engineers	Page:	1
22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Concrete Offset Fascia Mounted	Date:	9/5/2022
Offset Fascia Mount for RFC238P		
	22320 Foothill Blvd, Suite 600, Hayward, CA 94541 415 619 6000 415 500 9583 Concrete Offset Fascia Mounted	22320 Foothill Blvd, Suite 600, Hayward, CA 94541Specifier:415 619 6000 415 500 9583E-Mail:Concrete Offset Fascia MountedDate:

Specifier's comments: Install per manufacturer's recommendations


1 Input data

-				
Anchor type and diameter:	HIT-HY 200 V3 + HIT-Z-R 3/8			
Item number:	2018451 HIT-Z-R 3/8" x 4 3/8" (element) / 2334276 HIT-HY 200-R V3 (adhesive)			
Effective embedment depth:	$h_{ef,act}$ = 2.750 in. ($h_{ef,limit}$ = - in.)			
Material:	A4	Zenith Notes:		
Evaluation Service Report:	ESR-4868	1. Depth of concrete shall not be less than 5".		
Issued I Valid:	11/1/2021 11/1/2022	2. Edge distance of concrete from center of anchor bolt shall not be less than 3" on all sides.		
Proof:	Design Method ACI 318-19 / Chem	3. Minimum compressive strength of concrete shall		
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.375 in.	not be less than 2,500psi.		
Anchor plate ^R :	$l_x \times l_y \times t = 6.000$ in. x 6.000 in. x 0.375 in.; Recommended plate thickness: not calculated)			
Profile:	no profile			
Base material:	cracked concrete, 2500, fc' = 2,500 psi; h = 5.000 in., Temp. short/long: 32/32 °F			
Installation:	hammer drilled hole, Installation condition: Dry			
Reinforcement:	tension: not present, shear: not present; no supplemental splitting reinforcement present			
	edge reinforcement: none or < No. 4 bar			

Ű.

^R - The anchor calculation is based on a rigid anchor plate assumption.

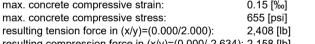
Geometry [in.] & Loading [lb, in.lb]

www.hilti.com

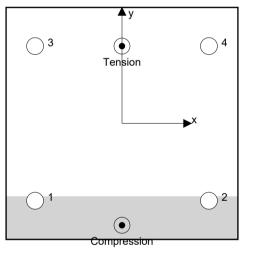
Company:	Zenith Engineers	Page:	2
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Offset Fascia Mounted	Date:	9/5/2022
Fastening point:	Offset Fascia Mount for RFC238P		

1.1 Load combination and design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Outward	$\frac{N = 250; V_x = 0; V_y = 0;}{M_x = 10,500; M_y = 0; M_z = 0;}$ $\frac{N_{sus} = 0; M_{x,sus} = 0; M_{y,sus} = 0;}{N_{sus} = 0; M_{y,sus} = 0;}$	<u>no</u>	<u>86</u>
2	Inward	$\begin{split} N &= -250; \ V_x = 0; \ V_y = 0; \\ M_x &= -10,500; \ M_y = 0; \ M_z = 0; \\ N_{sus} &= 0; \ M_{x,sus} = 0; \ M_{y,sus} = 0; \end{split}$	no	77
3	Downward	$\begin{split} N &= 0; \ V_x = 0; \ V_y = -250; \\ M_x &= 0; \ M_y = 0; \ M_z = 0; \\ N_{sus} &= 0; \ M_{x,sus} = 0; \ M_{y,sus} = 0; \end{split}$	no	18


2 Load case/Resulting anchor forces

Controlling load case: 1 Outward


Anchor reactions [lb]

Tension force: (+Tension, -Compression)

(, - I	/		
Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0	0	0	0
2	0	0	0	0
3	1,204	0	0	0
4	1,204	0	0	0
	ompressive strain:		0.15 [‰]	

resulting compression force in (x/y)=(0.000/-2.634): 2,158 [lb]

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ^{∮} N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	1,204	4,749	26	OK
Pullout Strength*	1,204	5,169	24	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	2,408	2,815	86	OK
* highest loaded anchor **anchor group (anchors in tension)				

www.hilti.com

Company:	Zenith Engineers	Page:	3
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Offset Fascia Mounted	Date:	9/5/2022
Fastening point:	Offset Fascia Mount for RFC238P		

3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-4868
φ N _s	_a ≥ N _{ua}	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.08	94,200

Calculations

N_{sa} [lb] 7,306

Results

 N _{sa} [lb]	ф _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
7,306	0.650	4,749	1,204

3.2 Pullout Strength

$N_{pn} = N_p \lambda_a$	refer to ICC-ES ESR-4868
$\phi N_{pn} \ge N_{ua}$	ACI 318-19 Table 17.5.2

Variables

λ _a	N _p [lb]
1.000	7,952
Calculations	
N IILI	

N_{pn} [lb] 7,952

Results

N _{pn} [lb]	ϕ_{concrete}	φ N _{pn} [lb]	N _{ua} [lb]
7,952	0.650	5,169	1,204

www.hilti.com

Company:	Zenith Engineers	Page:	4
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Offset Fascia Mounted	Date:	9/5/2022
Fastening point:	Offset Fascia Mount for RFC238P		

3.3 Concrete Breakout Failure

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
$\phi N_{cbg} \ge N_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0}$ = 9 $h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$ \Psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{\text{ef}}}}\right) \leq 1.0 $	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\begin{split} \psi_{cp,N} &= MAX \bigg(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \bigg) \leq 1.0 \\ N_{b} &= k_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5} \end{split}$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{b} = K_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{\text{c,N}}$
2.750	0.000	0.000	3.000	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
7.050	17	1.000	2,500	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ec1,N}}$	$\Psi_{\text{ec2,N}}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
82.83	68.06	1.000	1.000	0.918	1.000	3,876
Results						
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]			
4,331	0.650	2,815	2,408	-		

www.hilti.com

Company:	Zenith Engineers	Page:	5
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design.	Concrete Offset Fascia Mounted	Date:	9/5/2022
Fastening point:	Offset Fascia Mount for RFC238P		

4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_V = V_{ua} / \Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (relevant anchors)

5 Warnings

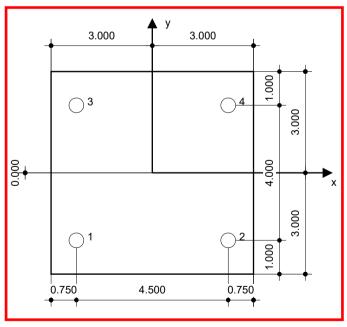
- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Company:	Zenith Engineers	Page:	6
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Offset Fascia Mounted	Date:	9/5/2022
Fastening point:	Offset Fascia Mount for RFC238P		

6 Installation data


Profile: no profile	Anchor type and diameter: HIT-HY 200 V3 + HIT-Z-R 3/8 Item number: 2018451 HIT-Z-R 3/8" x 4 3/8" (element) / 2334276 HIT-HY 200-R V3 (adhesive)
Hole diameter in the fixture (pre-setting) : $d_f = 0.438$ in.	Maximum installation torque: 354 in.lb
Hole diameter in the fixture (through fastening) : $d_f = 0.500$ in.	Hole diameter in the base material: 0.438 in.
Plate thickness (input): 0.375 in.	Hole depth in the base material: 2.750 in.
Recommended plate thickness: not calculated	Minimum thickness of the base material: 5.000 in.
Drilling method: Hammer drilled Cleaning: Compressed air cleaning of the drilled hole according to instructions	

3/8 Hilti HIT-Z Stainless steel non-cleaning bonded expansion anchor with Hilti HIT-HY 200 V3 Safe Set System

6.1 Recommended accessories

for use is required

Drilling	Cleaning	Setting	
Suitable Rotary Hammer	• -	 Dispenser including cassette and mixer 	
 Properly sized drill bit 		Torque wrench	

Coordinates Anchor [in.]

Anchor	x	У	c _{-x}	C+x	с _{-у}	c _{+y}
1	-2.250	-2.000	3.000	-	3.000	7.000
2	2.250	-2.000	7.500	-	3.000	7.000
3	-2.250	2.000	3.000	-	7.000	3.000
4	2.250	2.000	7.500	-	7.000	3.000

www.hilti.com

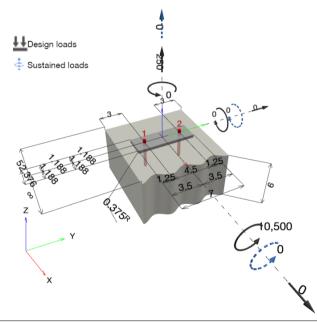
Company:	Zenith Engineers	Page:	7
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Offset Fascia Mounted	Date:	9/5/2022
Fastening point:	Offset Fascia Mount for RFC238P		

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.ł	nilti.	com
-------	--------	-----

Company:	Zenith Engineers	Page:	1
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Flush Fascia Mounted	Date:	9/5/2022
Fastening point:	Flush Fascia Mount for RFC238P		


Specifier's comments: Install per manufacturer's recommendations

1 Input data

-			
Anchor type and diameter:	HIT-HY 200 V3 + HIT-Z-R 3/8		
Item number:	2018451 HIT-Z-R 3/8" x 4 3/8" (element) / 2334276 HIT-HY 200-R V3 (adhesive)		
Effective embedment depth:	$h_{ef,act}$ = 3.000 in. ($h_{ef,limit}$ = - in.)		
Material:	A4	Zenith Notes:	
Evaluation Service Report:	ESR-4868	1. Depth of concrete shall not be less than 6".	
Issued I Valid:	11/1/2021 11/1/2022	Edge distance of concrete from center of anchor bolt shall not be less than 3" on all sides.	
Proof:	Design Method ACI 318-19 / Chem	3. Minimum compressive strength of concrete shall	
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.375 in.	not be less than 2,500psi.	
Anchor plate ^R :	l _x x l _y x t = 2.376 in. x 7.000 in. x 0.375 in.; (Recomm	nended plate thickness: not calculated)	
Profile:	no profile		
Base material:	cracked concrete, 2500, f_c ' = 2,500 psi; h = 6.000 in., Temp. short/long: 32/32 °F		
Installation:	hammer drilled hole, Installation condition: Dry		
Reinforcement:	tension: not present, shear: not present; no supplemental splitting reinforcement present		
	edge reinforcement: none or < No. 4 bar		

^R - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

www.hilti.com

Company:	Zenith Engineers	Page:	2
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Flush Fascia Mounted	Date:	9/5/2022
Fastening point:	Flush Fascia Mount for RFC238P		

1.1 Load combination and design results Max. Util. Anchor [%] Forces [lb] / Moments [in.lb] Case Description Seismic Outward $N = 250; V_v = 0; V_v = 0;$ 1 <u>no</u> <u>99</u> $M_x = 10,500; M_y = 0; M_z = 0;$ $N_{sus} = 0; M_{x,sus} = 0; M_{y,sus} = 0;$ N = -250; $V_x = 0; V_y = 0;$ 2 Inward 86 no $M_x = -10,500; M_y = 0; M_z = 0;$ $N_{sus} = 0; M_{x,sus} = 0; M_{y,sus} = 0;$ $N = 0; V_x = 0; V_y = -250;$ 3 Downward 22 no $M_x = 0; M_y = 0; M_z = 0;$ $N_{sus} = 0; M_{x,sus} = 0; M_{y,sus} = 0;$

2 Load case/Resulting anchor forces

Controlling load case: 1 Outward

resulting tension force in (x/y)=(0.000/2.250):

resulting compression force in (x/y)=(0.000/-3.065): 1,870 [lb]

Anchor reactions [lb]

Tension force: (+Tension, -Compression)					
Anchor	Tension force	Shear force	Shear force x	Shear force y	
1	0	0	0	0	
2	2,120	0	0	0	
	ompressive strain: ompressive stress:		0.28 [‰] 1,205 [psi]		

Tension

Compressio

≜y

Anchor forces are calculated based on the assumption of a rigid anchor plate.

2,120 [lb]

3 Tension load					
	Load N _{ua} [lb]	Capacity ¢ N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status	
Steel Strength*	2,120	4,749	45	OK	
Pullout Strength*	2,120	5,169	42	OK	
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A	
Concrete Breakout Failure**	2,120	2,153	99	OK	
* highest loaded anchor*anchor group (anchors in tension)					

www.hilti.com

Zenith Engineers	Page:	3
22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Concrete Flush Fascia Mounted	Date:	9/5/2022
Flush Fascia Mount for RFC238P		
	22320 Foothill Blvd, Suite 600, Hayward, CA 94541 415 619 6000 415 500 9583 Concrete Flush Fascia Mounted	22320 Foothill Blvd, Suite 600, Hayward, CA 94541Specifier:415 619 6000 415 500 9583E-Mail:Concrete Flush Fascia MountedDate:

3.1 Steel Strength

N _{sa}	= ESR value	refer to ICC-ES ESR-4868
φ N _{sa}	$_{a} \geq N_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.08	94,200

Calculations

N_{sa} [lb] 7,306

Results

N _{sa} [lb]	ф _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
7,306	0.650	4,749	2,120

3.2 Pullout Strength

$N_{pn} = N_p \lambda_a$	refer to ICC-ES ESR-4868
$\phi N_{pn} \ge N_{ua}$	ACI 318-19 Table 17.5.2

Variables

λ_{a}	N _p [lb]
1.000	7,952
Calculations	

N_{pn} [lb] 7,952

Results

N _{pn} [lb]	ϕ_{concrete}	φ N _{pn} [lb]	N _{ua} [lb]
7,952	0.650	5,169	2,120

www.hilti.com

Company:	Zenith Engineers	Page:	4
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Flush Fascia Mounted	Date:	9/5/2022
Fastening point:	Flush Fascia Mount for RFC238P		

3.3 Concrete Breakout Failure

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
$\phi N_{cbg} \ge N_{ua}$	ACI 318-19 Table 17.5.2
A_{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b) A_{Nc0} = 9 h_{ef}^2	ACI 318-19 Eq. (17.6.2.1.4)
	, loi o i o i o i o i c q. (i i i o i i i i)
$\Psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{\text{ef}}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\begin{split} \psi_{cp,N} &= MAX\!\left(\!\frac{c_{a,min}}{c_{ac}},\frac{1.5h_{ef}}{c_{ac}}\!\right) \leq 1.0\\ N_{b} &= k_{c} \ \lambda_{a} \ \sqrt{f_{c}} \ h_{ef}^{1.5} \end{split}$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{b} = k_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5}$	ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{c,N}$
3.000	0.000	0.000	3.000	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
6.600	17	1.000	2,500	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]		
67.50	81.00	1.000	1.000	0.900	1.000	4,417		
Results								
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]					
3,313	0.650	2,153	2,120	-				

www.hilti.com

Company:	Zenith Engineers	Page:	5
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Flush Fascia Mounted	Date:	9/5/2022
Fastening point:	Flush Fascia Mount for RFC238P		

4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_V = V_{ua} / \Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- · For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

Anchor type and diameter: HIT-HY 200 V3 + HIT-Z-R 3/8

www.hilti.com

Zenith Engineers	Page:	6
22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Concrete Flush Fascia Mounted	Date:	9/5/2022
Flush Fascia Mount for RFC238P		
	22320 Foothill Blvd, Suite 600, Hayward, CA 94541 415 619 6000 415 500 9583 Concrete Flush Fascia Mounted	22320 Foothill Blvd, Suite 600, Hayward, CA 94541Specifier:415 619 6000 415 500 9583E-Mail:Concrete Flush Fascia MountedDate:

6 Installation data

	Item number: 2018451 HIT-Z-R 3/8" x 4 3/8" (element) /
Profile: no profile	
	2334276 HIT-HY 200-R V3 (adhesive)
Hole diameter in the fixture (pre-setting) : d _f = 0.438 in.	Maximum installation torque: 354 in.lb
Hole diameter in the fixture (through fastening) : $d_f = 0.500$ in.	Hole diameter in the base material: 0.438 in.
Plate thickness (input): 0.375 in.	Hole depth in the base material: 3.000 in.
Recommended plate thickness: not calculated	Minimum thickness of the base material: 5.250 in.
Drilling method: Hammer drilled	
Cleaning: Compressed air cleaning of the drilled hole according to instructions	

3/8 Hilti HIT-Z Stainless steel non-cleaning bonded expansion anchor with Hilti HIT-HY 200 V3 Safe Set System

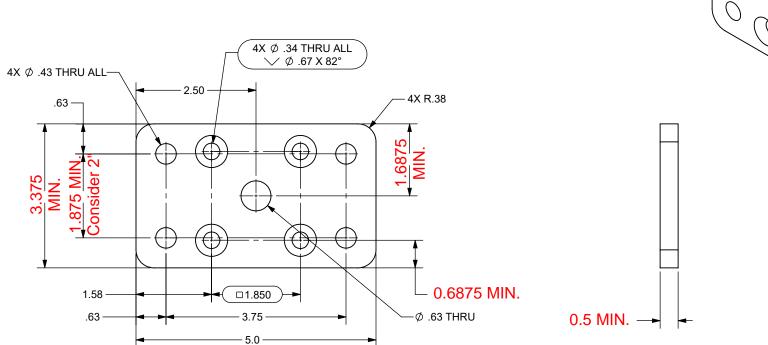
6.1 Recommended accessories

for use is required

illing			С	leaning					Setting
Suitable Rotary Ha Properly sized drill			•	-					Dispenser including cassette and mixerTorque wrench
			Γ	+1	▲ y .188 1.188	+			
					2	1.250		-	
							3.500		
			000.0	+		4.500		×	
					_1		1 3.500		
						1.250		⊢	
				1	.188 1.188	· · ·			
Coordinates Ancho Anchor x	or [in.] y	с _{-х}	c _{+x}	с _{-у}	c _{+y}				
1 0.000		5.000	-+x -	3.000	7.500				
2 0.000		5.000	-	7.500	3.000				

www.hilti.com

Company:	Zenith Engineers	Page:	7
Address:	22320 Foothill Blvd, Suite 600, Hayward, CA 94541	Specifier:	
Phone I Fax:	415 619 6000 415 500 9583	E-Mail:	irina@zenithengineers.com
Design:	Concrete Flush Fascia Mounted	Date:	9/5/2022
Fastening point:	Flush Fascia Mount for RFC238P		


7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

Page 86 of 96

PART NUMBER	FINISH	SPECS	L	а	b	G	THK
RFXBP3X5-MI	MILL	RAW					
RFXBP3X5-BL	BLACK	AAMA 2604 / INTERPON D2000	25.13	0.11	-0.08	35.7	
RFXBP3X5-BZ	BRONZE	AAMA 2604 / INTERPON D2000	32.77	0.73	2.55	40.2	
RFXBP3X5-WH	WHITE	AAMA 2604 / INTERPON D2000	92.45	-0.83	1.6	6.9	
RFXBP3X5-SI	SILVER	AAMA 2604 / INTERPON D2000	87.3	-0.69	1.6	6.9	
RFXBP3X5-AN	ANODIZED	215R 1 CLASS 1 CLEAR	87.3	-0.69	1.6	6.9	

REVISIONS						
ECR/DCR	REV.	DESCRIPTION	DATE	APPD		
21-021	А	INITIAL RELEASE	4-16-21	MRC		
21-091	В	CLARIFIED DIMENSIONAL INFORMATION, ADDED CENTER HOLE, MODIFED GENRAL NOTES, 3.0 WAS 3.00, 5.0 WAS 5.00	11-16-21	СММ		

NOTES:

1. PART TO HAVE A NON-ABRASIVE FINISH.

2. PART TO HAVE MIN. DRAFT ANGLE AS TOOLING REQUIRES.

3. ANY AND ALL CHANGES TO MATERIAL OR FINISH MUST BE APPROVED BY NWI.

4. ALL DIAMETERS TO BE CONCENTRIC WITHIN .005 UNLESS OTHERWISE SPECIFIED.

5. ALL CORNERS TO BE .015 MAX R OR CHAMFER OR OTHERWISE NOTED.

6. ALL DIMENSIONS ARE FINISHED PART DIMENSIONS.

7. POWDERCOAT FINISH TO BE INTERPON 600 OR NWI APPROVED EQUIVALENT.

8. REMOVE ALL BURRS, BREAK CORNERS, AND SHARP EDGES.

9. NO FLASH ALLOWED.

10. PART VOLUME: 5.02 CU. IN.

11. (XXXXXX) DENOTES CRITICAL TO FUNCTION

PART NUMBER: RFXBP3X5-XX

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS

WITHOUT THE WRITTEN PERMISSION OF

THE CABLE CONNECTION IS PROHIBITED.

DRAWING IS THE SOLE PROPERTY OF

THE CABLE CONNECTION. ANY REPRODUCTION IN PART OR AS A WHOLE DIMENSIONS ARE IN INCHES

TOLERANCES: FRACTIONAL±1/16" ANGULAR: MACH±1*BEND ±1*

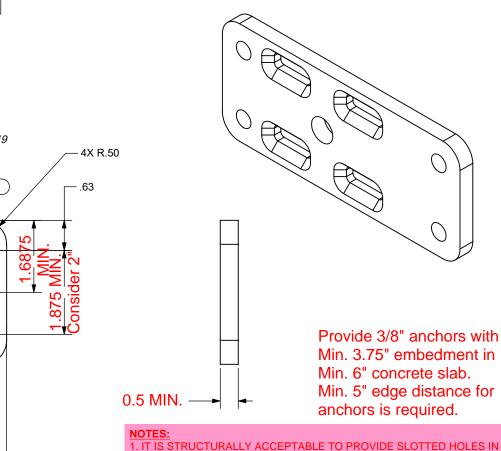
ONE PLACE DECIMAL ±0.03

TWO PLACE DECIMAL ±0.01

THREE PLACE DECIMAL 20.005

DO NOT SCALE DRAWING

MATERIAL 6061-T6


VARIOUS

Provide 3/8" anchors with Min. 3.75" embedment in Min. 6" concrete slab. Min. 5" edge distance for anchors is required.

	NAME	DATE		
DRAWN	MRC	04/16/21	🔰 (🚗 Rail 🕞	7
CHECKED				AT
ENG APPR.			CABLE - SPECIALTY	
MFG APPR.			RFX 3X5	
Q.A.			SURFACE MOUNT	·
COMMENTS	i:		BASE PLATE	
_			A NO. RFXBP3X5-X	X B
			SCALE:1:2 WEIGHT: SHE	ET 1 OF 1

Page 87 of 96

ECR/DCR	REV.	DESCRIPTION	DATE	APPD
21-021	А	INITIAL RELEASE	4-16-21	MRC
21-021	В	UPDATED SLOT RADIUS TO .100	5-05-21	MRC
21-091	С	CLARIFIED DIMENSIONAL INFORMATION, ADDED CENTER DRAIN HOLE, MODIFIED GENERAL NOTES, 3.0 WAS 3.00, 7.0 WAS 7.00	11-16-21	СММ

POSTS ONLY AND NOT AT THE END OF THE STAIR RAILS.

NOTES:

PART NUMBER

RFXBP3X74H-BL

RFXBP3X74H-BZ

RFXBP3X74H-SI

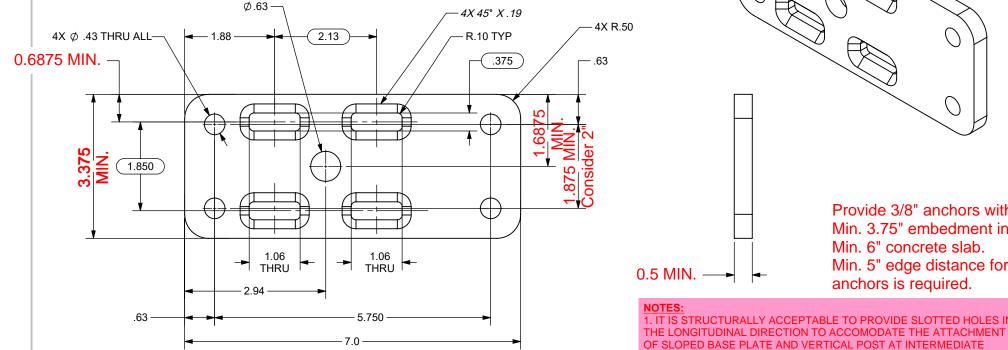
RFXBP3X74H-WH

FINISH

BLACK

BRONZE

SILVER


WHITE

1. PART TO HAVE A NON-ABRASIVE FINISH.

- 2. PART TO HAVE MIN. DRAFT ANGLE AS TOOLING REQUIRES.
- 3. ANY AND ALL CHANGES TO MATERIAL OR FINISH MUST BE APPROVED BY NWI.
- 4. ALL DIAMETERS TO BE CONCENTRIC WITHIN .005 UNLESS OTHERWISE SPECIFIED.
- 5. ALL CORNERS TO BE .015 MAX R OR CHAMFER OR OTHERWISE NOTED.
- 6. ALL DIMENSIONS ARE FINISHED PART DIMENSIONS.
- 7. POWDERCOAT FINISH TO BE INTERPON 600 OR NWI APPROVED EQUIVALENT.
- 8. REMOVE ALL BURRS, BREAK CORNERS, AND SHARP EDGES.
- 9. NO FLASH ALLOWED.
- 10. PART VOLUME: 6.66 CU. IN.
- 11. (XXXXXXX) DENOTES CRITICAL TO FUNCTION

PART NUMBER: RFXBP3X74H-XX

	DIMENSIONS ARE IN INCHES		NAME	DATE		$\sim -$			
	TOLERANCES: FRACTIONAL±1/16"	DRAWN	MRC	04/16/21	- (- (Dail)		- Y -	
	ANGULAR: MACH ±1*BEND ±1*	CHECKED					ar	$\Gamma \Lambda$	
	ONE PLACE DECIMAL ±0.03 TWO PLACE DECIMAL ±0.01	ENG APPR.				CABL	E • SPECIAI	LTY .	
PROPRIETARY AND CONFIDENTIAL	THREE PLACE DECIMAL ±0.005	MFG APPR.				RFX	(3X7		
THE INFORMATION CONTAINED IN THIS	MATERIAL	Q.A.				SURFAC	E MOU	NT	
DRAWING IS THE SOLE PROPERTY OF	6061-T6 AL	COMMENTS:				BASE	PLATE		
THE CABLE CONNECTION. ANY REPRODUCTION IN PART OR AS A WHO	FINISH				SIZE DWG			-	RE
WITHOUT THE WRITTEN PERMISSION OF	VARIOUS				A NO	RFXBF	'3X74	H-XX	C
THE CABLE CONNECTION IS PROHIBITE	D. DO NOT SCALE DRAWING				SCALE:1:2	WEIGHT:		SHEET 1 O	-

SPECS

AAMA 2604 /

INTERPON D2000 AAMA 2604 /

INTERPON D2000 AAMA 2604 /

INTERPON D2000 AAMA 2604 /

INTERPON D2000

L

25.13

32.77

87.3

92.45

а

0.11

0.73

-0.69

-0.83

G

35.7

40.2

6.9

6.9

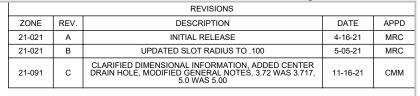
b

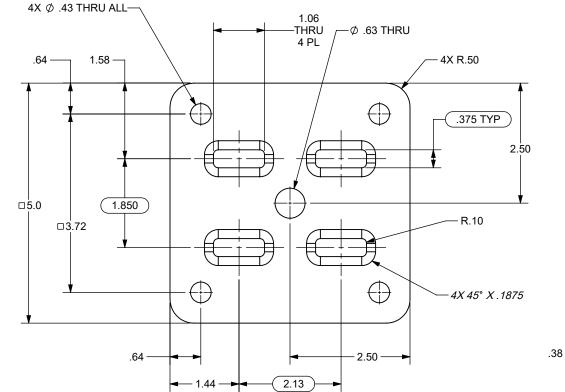
-0.08

2.55

1.6

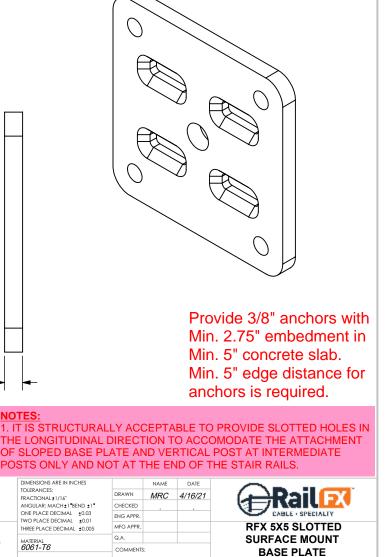
1.6


THK


Page 88 of 96

									Page	58 01 90	
PART NUMBER	FINISH	SPECS	L	а	b	G			REVISIONS		
RFXBP5X5OS-MI	MILL	RAW					ECR/D	DCR RE	V. DESCRIPTION	DATE	APPE
RFXBP5X5OS-BL	BLACK	PAINTED	25.13	0.11	-0.08	35.7	21-03	031 A	INITIAL RELEASE	10-18-21	СММ
RFXBP5X5OS-BZ	BRONZE	PAINTED	32.77	0.73	2.55						
RFXBP5X5OS-WH	WHITE	PAINTED	92.45	-0.83			21-09	091 B	CLARIFIED DIMENSIONAL INFORMATION, ADDED DRAIN HOLE, MODIFIED GENERAL NOTES, 3.72 WAS 3.717, 1.850 WAS 1.85. 5.0 WAS 5.00	11-16-21	CMN
RFXBP5X5OS-SI	SILVER	PAINTED	87.3	-0.69	1.6	6.9			1.850 WAS 1.85. 5.0 WAS 5.00		
RFXBP5X5OS-AN	ANODIZED	ANODIZED	87.3	-0.69	1.6	6.9					
лотеs:	.64						.50 2.344 THRU ALL 2 Ø .67 X 82° 33 THRU 33 THRU 40 .43 THRU ALL	0.5	Provide 3/8" a Min. 3" embed Min. 5.25" cor Min. 5" edge of	lment ir Icrete s listance	n slab.
	DRAFT ANGLE AS TOOL								anchors is req	uired.	
2. PART TO HAVE MIN. 3. ANY AND ALL CHAN	. DRAFT ANGLE AS TOOL IGES TO MATERIAL OR FI	INISH MUST BE APPROVE						DIMENSIONS A		uired.	
2. PART TO HAVE MIN. 3. ANY AND ALL CHAN 4. ALL DIAMETERS TO	. DRAFT ANGLE AS TOOL IGES TO MATERIAL OR FI DE CONCENTRIC WITHII	INISH MUST BE APPROVE N .005 UNLESS OTHERWIS	SE SPECIFI	ED.				TOLERANCES: FRACTIONAL	RE IN INCHES NAME DATE DRAWN MRC 5-25-21	uired.	7
2. PART TO HAVE MIN. 3. ANY AND ALL CHAN 4. ALL DIAMETERS TO 5. ALL CORNERS TO E	. DRAFT ANGLE AS TOOL IGES TO MATERIAL OR FI 9 BE CONCENTRIC WITHII BE .015 MAX R OR CHAMI	INISH MUST BE APPROVE N .005 UNLESS OTHERWIS FER OR OTHERWISE NOT	SE SPECIFI	ED.				TOLERANCES: FRACTIONAL: ANGULAR: MA ONE PLACE DE	RE IN INCHES NAME DATE I//6" CH21*BEND 2:1* CH2CKED CH2	UIRED.	(
2. PART TO HAVE MIN. 3. ANY AND ALL CHAN 4. ALL DIAMETERS TO 5. ALL CORNERS TO E 6. ALL DIMENSIONS AN	. DRAFT ANGLE AS TOOL IGES TO MATERIAL OR FI DE CONCENTRIC WITHIN BE .015 MAX R OR CHAMI RE FINISHED PART DIMEN	INISH MUST BE APPROVE N .005 UNLESS OTHERWIS FER OR OTHERWISE NOT	SE SPECIFI ED.	ED.				TOLERANCES: FRACTIONAL± ANGULAR: MA ONE PLACE DE TWO PLACE DE	RE IN INCHES NAME DATE 1/16" DRAWN MRC 5-25-21 CHECKED ENG APPR. CHAL: 0.03 CHECKED ENG APPR. CHAL: 0.01 CHECKED CHECKED ENG APPR. CHECKED CHECKED CHECKED ENG APPR. CHECKED	ail🖸	()
2. PART TO HAVE MIN. 3. ANY AND ALL CHAN 4. ALL DIAMETERS TO 5. ALL CORNERS TO E 6. ALL DIMENSIONS AF 7. POWDERCOAT FINIS	. DRAFT ANGLE AS TOOL IGES TO MATERIAL OR FI DE CONCENTRIC WITHIN BE .015 MAX R OR CHAMI RE FINISHED PART DIMEN	INISH MUST BE APPROVE N .005 UNLESS OTHERWIS FER OR OTHERWISE NOT NSIONS. 9 OR NWI APPROVED EQU	SE SPECIFI ED.	ED.			PROPRIETARY AND CONFIDENTIAL	TOLERANCES: FRACTIONAL ± ANGULAR: MA ONE PLACE DE TWO PLACE DE THREE PLACE DE MATERIAL	RE IN INCHES NAME DATE 1//6' DRAWN MRC 5-25-21 CHECKED CHECKED ENG APPR. ECIMAL 20.005 MFG APPR. R QA DSX 50 5X5 50		(
 PART TO HAVE MIN. ANY AND ALL CHAN ALL DIAMETERS TO ALL CORNERS TO E ALL DIMENSIONS AI POWDERCOAT FINI: REMOVE ALL BURR. NO FLASH ALLOWER 	DRAFT ANGLE AS TOOL IGES TO MATERIAL OR FI BE CONCENTRIC WITHIN BE .015 MAX R OR CHAMN RE FINISHED PART DIMEI SH TO BE INTERPON 600 S, BREAK CORNERS, AND D.	INISH MUST BE APPROVE N .005 UNLESS OTHERWIS FER OR OTHERWISE NOT NSIONS. 9 OR NWI APPROVED EQU	SE SPECIFI ED.	ED.			PROPRIETARY AND CONFIDENTIAL THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF	TOLERANCES: FRACTIONAL ± ANGULAR: MA ONE PLACE DE TWO PLACE DE THREE PLACE DE MATERIAL	RE IN INCHES NAME DATE 1//6" DRAWN MRC 5-25-21 CHECKED CHECKED CHECKED CHECKED CKIMAL 2003 ENG APPR. CHECKED CHECKED GA. CHECKED CHECKED CHECKED CHECKED	E- SPECIALTY FX	()
 PART TO HAVE MIN. ANY AND ALL CHAN ALL DIAMETERS TO ALL CORNERS TO E ALL DIMENSIONS AI POWDERCOAT FINIS REMOVE ALL BURR NO FLASH ALLOWEI PART VOLUME: 8.3 	DRAFT ANGLE AS TOOL IGES TO MATERIAL OR FI BE CONCENTRIC WITHIN BE .015 MAX R OR CHAMN RE FINISHED PART DIMEI SH TO BE INTERPON 600 S, BREAK CORNERS, AND D.	INISH MUST BE APPROVE N .005 UNLESS OTHERWIS FER OR OTHERWISE NOT NSIONS. OR NWI APPROVED EQU D SHARP EDGES.	SE SPECIFI ED.	ED.			PROPRIETARY AND CONFIDENTIAL THE INFORMATION CONTAINED IN THIS DRAWING STHE SOLE PROPERTY OF NATIONADE INDUSTRIES. ANY	TOLERANCES: FRACTIONAL ± ANGULAR: MA ONE PLACE DE TWO PLACE DE THREE PLACE DE MATERIAL	RE IN INCHES NAME DATE I/16" DRAWN MRC 5-25-21 CH21"BEND 21" CHECKED ENG APPR. CHECKED CCMAL 2003 MFG APPR. CHECKED R ALUMINUM COMMENTS: COMMENTS: CME	FX FFSET	(

Page 89 of 96


PART NUMBER	FINISH	SPECS	L	а	b	G
RFXBP5X5S-MI	MILL	RAW				
RFXBP5X5S-BL	BLACK	AAMA 2604 / INTERPON D2000	25.13	0.11	-0.08	35.7
RFXBP5X5S-BZ	BRONZE	AAMA 2604 / INTERPON D2000	32.77	0.73	2.55	40.2
RFXBP5X5S-WH	WHITE	AAMA 2604 / INTERPON D2000	92.45	-0.83	1.6	6.9
RFXBP5X5S-SI	SILVER	AAMA 2604 / INTERPON D2000	87.3	-0.69	1.6	6.9
RFXBP5X5S-AN	ANODIZED	215R 1 CLASS 1 CLEAR	87.3	-0.69	1.6	6.9

- 1. PART TO HAVE A NON-ABRASIVE FINISH.
- 2. PART TO HAVE MIN. DRAFT ANGLE AS TOOLING REQUIRES.
- 3. ANY AND ALL CHANGES TO MATERIAL OR FINISH MUST BE APPROVED BY NWI.
- 4. ALL DIAMETERS TO BE CONCENTRIC WITHIN .005 UNLESS OTHERWISE SPECIFIED.
- 5. ALL CORNERS TO BE .015 MAX R OR CHAMFER OR OTHERWISE NOTED.
- 6. ALL DIMENSIONS ARE FINISHED PART DIMENSIONS.
- 7. POWDERCOAT FINISH TO BE INTERPON 600 OR NWI APPROVED EQUIVALENT.
- 8. REMOVE ALL BURRS, BREAK CORNERS, AND SHARP EDGES.
- 9. NO FLASH ALLOWED.
- 10. PART VOLUME: 8.16 CU. IN.
- 11. (XXXXXXX) DENOTES CRITICAL TO FUNCTION

SIZE DWG.

A NO.

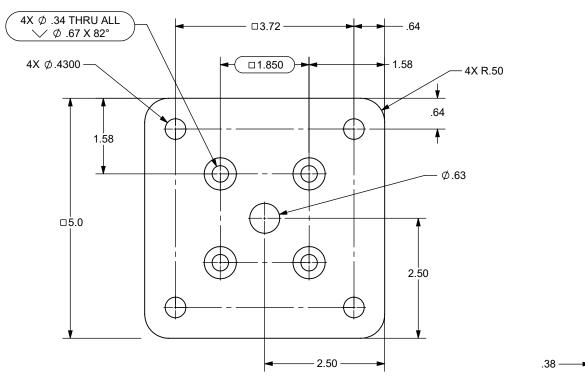
SCALE-1-2 WEIGHT

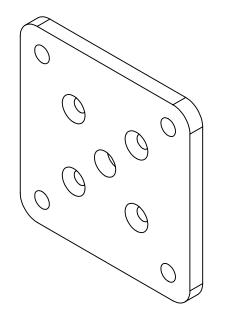
RFXBP5X5S

С

SHEET 1 OF 1

PROPRIETARY AND CONFIDENTIAL THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF THE CABLE CONNECTION. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF THE CABLE CONNECTION IS PROHIBITED.


VARIOUS DO NOT SCALE DRAWING


NOTES:

Page 90 of 96

PART NUMBER	XX-FINISH	SPECS	L	а	b	G	THK
RFXBP5X5-MI	MILL	RAW					
RFXBP5X5-BL	BLACK	AAMA 2604 / INTERPON D2000	25.13	0.11	-0.08	35.7	
RFXBP5X5-BZ	BRONZE	AAMA 2604 / INTERPON D2000	32.77	0.73	2.55	40.2	
RFXBP5X5-WH	WHITE	AAMA 2604 / INTERPON D2000	92.45	-0.83	1.6	6.9	
RFXBP5X5-SI	SILVER	AAMA 2604 / INTERPON D2000	87.3	-0.69	1.6	6.9	
RFXBP5X5-AN	ANODIZED	215R 1 CLASS 1 CLEAR	87.3	-0.69	1.6	6.9	

		REVISIONS		
ECR/DCR	REV.	DESCRIPTION	DATE	APPD
-	1	INITIAL RELEASE	3-11-18	DHL
-	2	ADDED WIRING HOLE	6-26-19	DHL
21-015	3	UPDATED TOLERANCES FOR MANUFACTURING PROCESS	3-31-21	MRC
21-021	Α	INITIAL RELEASE	4-16-21	MRC
21-091	В	CLARIFIED DIMENSIONAL INFORMATION, MODIFIED GENERAL NOTES, .38 WAS .375, 3.72 WAS 3.717, 5.0 WAS 5.00	11-16-21	СММ

Provide 3/8" anchors with Min. 2.75" embedment in Min. 5" concrete slab. Min. 5" edge distance for anchors is required.

NOTES:

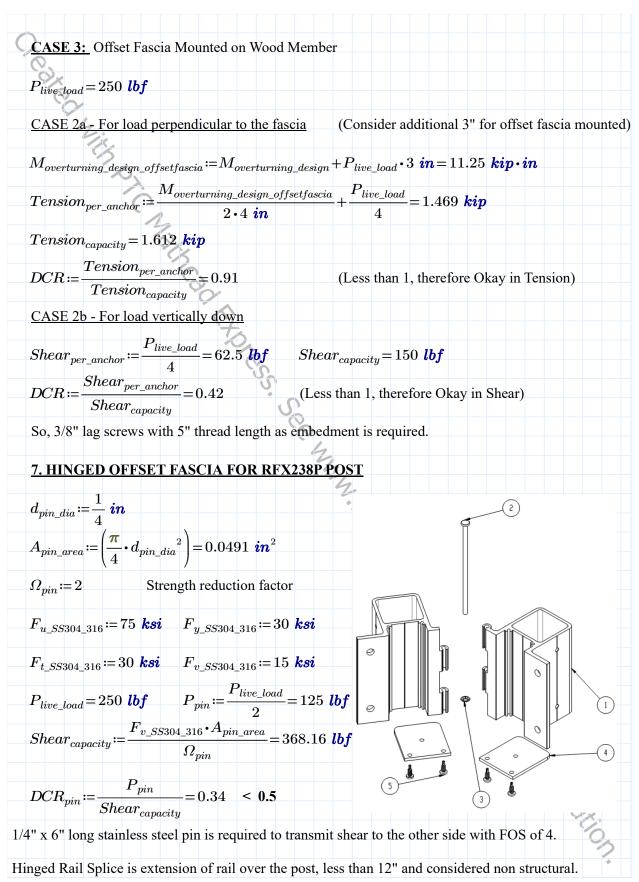
- 1. PART TO HAVE A NON-ABRASIVE FINISH.
- 2. PART TO HAVE MIN. DRAFT ANGLE AS TOOLING REQUIRES.
- 3. ANY AND ALL CHANGES TO MATERIAL OR FINISH MUST BE APPROVED BY NWI.
- 4. ALL DIAMETERS TO BE CONCENTRIC WITHIN .005 UNLESS OTHERWISE SPECIFIED.
- 5. ALL CORNERS TO BE .015 MAX R OR CHAMFER OR OTHERWISE NOTED.
- 6. ALL DIMENSIONS ARE FINISHED PART DIMENSIONS.
- 7. POWDERCOAT FINISH TO BE INTERPON 600 OR NWI APPROVED EQUIVALENT.
- 8. REMOVE ALL BURRS, BREAK CORNERS, AND SHARP EDGES.
- 9. NO FLASH ALLOWED.
- 10. PART VOLUME: 8.74 CU. IN.
- 11. (XXXXXX) DENOTES CRITICAL TO FUNCTION

PART NUMBER: RFXBP5X5-XX

	DIMENSIONS ARE IN INCHES		NAME	DATE	
	TOLERANCES: FRACTIONAL ±1/16"	DRAWN	MRC	04/16/21	Dail 🔽
	ANGULAR: MACH 1 BEND 11	CHECKED			
	ONE PLACE DECIMAL ±0.03 TWO PLACE DECIMAL ±0.01	ENG APPR.			CABLE - SPECIALTY
PROPRIETARY AND CONFIDENTIAL	THREE PLACE DECIMAL ±0.005	MFG APPR.			RFX 5X5
THE INFORMATION CONTAINED IN THIS	MATERIAL	Q.A.			SURFACE MOUNT
DRAWING IS THE SOLE PROPERTY OF	6061-T6	COMMENTS:			BASE PLATE
THE CABLE CONNECTION. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF	VARIOUS	-			SIZE DWG. RFXBP5X5-XX B
THE CABLE CONNECTION IS PROHIBITED.	DO NOT SCALE DRAWING				SCALE:1:2 WEIGHT: SHEET 1 OF 1

6. WOOD ANCHOR CONNECTION FOR R	<u>A A 2301 1 03 1</u>
Consider short-term loading in wet enviroment &	
$G \coloneqq 0.5$	(Specific Gravity of wood member)
$D \coloneqq \frac{3}{8}$	(Diameter of Lag Screw)
$C_D := 1.6$ $C_m := 0.7$ $C_t := 1.0$	$K_w := 1800$
$G := 0.5$ $D := \frac{3}{8}$ $C_{D} := 1.6$ $C_{m} := 0.7$ $C_{t} := 1.0$ $W_{3_8_screw} := K_{w} \cdot G^{\frac{3}{2}} \cdot D^{\frac{3}{4}} \frac{lbf}{in} = 304.97 \frac{lbf}{in}$ $W'_{3_8_screw} := C_{D} \cdot C_{m} \cdot C_{t} \cdot W_{3_8_screw} = 341.50$	(3/8" Lag Screw Withdrawal Value)
$W'_{3_{8_{screw}}} \coloneqq C_{D} \cdot C_{m} \cdot C_{t} \cdot W_{3_{8_{screw}}} = 341.56$	$6 \frac{lbf}{in}$
$Tension_{capacity} \coloneqq 4.72 \text{ in} \cdot W_{3.8_screw} = 1.6 \text{ k}$	(Withdrawal Capacity for 5 inch thread length) (Use 3/8" x 10" long lag screw)
Shear _{capacity} :=150 lbf	(Capacity of 3/8" lag screw per NDS Table 121
CASE 1: Mounted on top of Wood Member	
Base Plate Anchorage design for Wood Connect	ion
$P_{live_load} = 250 \ lbf$	
$M_{overturning_design} = 10.5 \ kip \cdot in$	
$Min_{anchor_spacing}$:= 3.717 in	(Minimum spacing between lag screws)
$Tension_{per_anchor} \coloneqq \frac{M_{overturning_design}}{2 \cdot Min_{anchor_spacing}} = 1.4$	11 <i>kip</i> (Tension per lag screw)
$Shear_{per_anchor} \coloneqq \frac{P_{live_load}}{4} = 62.5 \ lbf$	(Shear per lag screw)
$Tension_{capacity} = 1.612 \ kip$	
$Shear_{capacity} = 150 \ lbf$	
$DCR_T \coloneqq rac{Tension_{per_anchor}}{Tension_{capacity}} = 0.88$	(Less than 1, therefore Okay in Tension) (Less than 1, therefore Okay in Shear)
$DCR_V \coloneqq \frac{Shear_{per_anchor}}{Shear_{capacity}} = 0.42$	(Less than 1, therefore Okay in Shear)

190417-CO3-Railing-MathcadCalcs-HKM.mcdx


Zenith Project: 190417-CO3 Project Title: Railing Design Project Engineer: Hemal Modi, P.E. Reviewed By: Senthil Puliyadi, M.S., M. Eng., P.E.

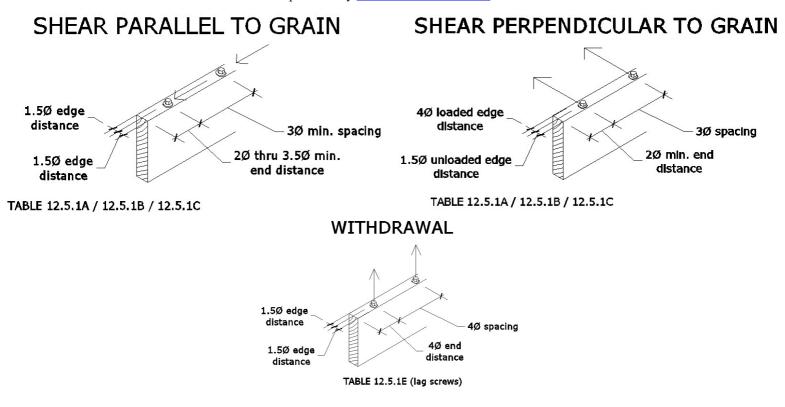
$\alpha \coloneqq \operatorname{atan} \left(\frac{Tension_p}{Shear_{pe}} \right)$	$\left(\frac{\text{per}_anchor}{r_anchor}\right) = 87.466 \ de$	g Harkinsons form	nula should be us	ed for combined ch	eck
$P_{resultantload} \coloneqq \sqrt{She}$	$ear_{per_anchor}^2 + Tensic$	$m_{per_anchor}^2 = 1.41$			
$Z_{\alpha} \coloneqq \underbrace{Ten}$	$sion_{capacity} {f \cdot} Shear_{capacity}$	= 1.	582 <i>kip</i>		
· · · · · · · · · · · · · · · · · · ·	$sion_{capacity} \cdot Shear_{capacity} \cdot shear_{capac$	$_{acity} \cdot \sin\left(lpha ight)^2$	-		
$DCR \coloneqq \frac{P_{resultant load}}{Z_{\alpha}}$	-=0.894				
So, 3/8" lag screws w	ith 5" thread length as e	mbedment is requir	ed.		
CASE 2: Flush Fasc	ia Mounted on Wood M	ember	TOP OF DECK	PE 2%"x2%" ALUMINUM POST	
$P_{live_load} = 250 \ lbf$			%6" HOLES FOR		
<u>CASE 2a - For load p</u>	perpendicular to the fase				
$M_{overturning_design} =$	10.5 <i>kip•in</i>	12 martin			
$L_{lever_arm_upper_lag}$:=	4.5 in + 1.5 in = 6 in	$L_{lever_arm_low}$	$wer_lag \coloneqq 1.5$ in		
$Tension_{capacity} = 1.0$	312 <i>kip</i>				
$M_{resist} \coloneqq L_{lever_arm_v}$	$_{upper_lag} {ullet} Tension_{capaci}$	$_{ty}$ + $L_{lever_arm_lower_}$	$Lag \cdot \frac{L_{lever_arm_lo}}{L_{lever_arm_u}}$	$\frac{wer_lag}{vpper\ lag} \bullet Tension_{co}$	apac
$M_{resist} = 10.28 \ kip$ ·					
$DCR \coloneqq \frac{M_{overturning}}{M_{resis}}$	$\frac{design}{t} = 1.02$ (Acce	ptable in Tension)	P.		
CASE 2b - For load y	vertically down		3		
$Shear_{per_anchor} \coloneqq \frac{P_{d}}{P_{d}}$	$\frac{live_load}{2} = 125 \ lbf$		0		
$Shear_{capacity} = 150$				25	
$DCR \coloneqq rac{Shear_{per_an}}{Shear_{capad}}$	$\frac{chor}{vity} = 0.83$ (Less	than 1, therefore Ok	ay in Shear)		
	ith 5" thread length as e	mbedment is requir	ed		

190417-CO3-Railing-MathcadCalcs-HKM.mcdx

190417-CO3-Railing-MathcadCalcs-HKM.mcdx

Page 94 of 96

Design Method	Allowable Stress Design (ASD)				
Connection Type	Withdrawal loading	~			
Fastener Type	Lag Screw	~			
Loading Scenario	N/A	~			


Main Member Type	Douglas Fir-Larch 🗸
Main Member Thickness	11.5 in. 🗸
Side Member Type	Steel 🗸
Side Member Thickness	12 gage 🗸 🗸
Washer Thickness	0 in. 🗸
Nominal Diameter	3/8 in. 🗸
Length	10 in. 🗸
Load Duration Factor	C_D = 1.6
Wet Service Factor	C_M = 0.7 ✔
End Grain Factor	C_eg = 1.0
Temperature Factor	C_t = 1.0 ✔

Adjusted ASD Capacity 1804 lbs.

• The Adjusted ASD Capacity only applies to withdrawal of the fastener from the main member. It does <u>not</u> address head pull-through capacity of the fastener in the side member.

While every effort has been made to insure the accuracy of the information presented, and special effort has been made to assure that the information reflects the state-of-the-art, neither the American Wood Council nor its members assume any responsibility for any particular design prepared from this on-line Connection Calculator. Those using this on-line Connection Calculator assume all liability from its use.

The Connection Calculator was designed and created by Cameron Knudson, Michael Dodson and David Pollock at Washington State University. Support for development of the Connection Calculator was provided by <u>American Wood Council</u>.

Page 95 of 96

Design Method	Method Allowable Stress Design (ASD)				
Connection Type	Lateral loading	~			
Fastener Type	Lag Screw	~			
Loading Scenario	Single Shear	~			

Main Member Type	Douglas Fir-Larch 🗸
Main Member Thickness	2.5 in. 🗸
Main Member: Angle of Load to Grain	90
Side Member Type	Steel 🗸
Side Member Thickness	1/4 in. 🗸
Side Member: Angle of Load to Grain	0
Washer Thickness	0 in. 🗸
Nominal Diameter	3/8 in. 🗸
Length	2.5 in. 🗸
Load Duration Factor	C_D = 1.6
Wet Service Factor	C_M = 0.7 ♥
End Grain Factor	C_eg = 1.0 V
Temperature Factor	C_t = 1.0

Connection Yield Modes

Im	440 lbs.
Is	1291 lbs.
II	241 lbs.
IIIm	251 lbs.
IIIs	241 lbs.
IV	202 lbs.

Adjusted ASD Capacity 202 lbs.

- Lag Screw bending yield strength of 45000 psi is assumed.
- The Adjusted ASD Capacity is only applicable for lag screws with adequate end distance, edge distance and spacing per NDS chapter 11.
- ASTM A36 Steel is assumed for steel side members 1/4 in. thick, and ASTM A653 Grade 33 Steel is assumed for steel side members less than 1/4 in. thick.

While every effort has been made to insure the accuracy of the information presented, and special effort has been made to assure that the information reflects the state-of-the-art, neither the American Wood Council nor its members assume any responsibility for any particular design prepared from this on-line Connection Calculator. Those using this on-line Connection Calculator assume all liability from its use.

The Connection Calculator was designed and created by Cameron Knudson, Michael Dodson and David Pollock at Washington State University. Support for development of the Connection Calculator was provided by <u>American Wood Council</u>.

Page 96 of 96

Design Method	d Allowable Stress Design (ASD)	
Connection Type	pe Lateral loading	
Fastener Type	pe Lag Screw	
Loading Scenario	Single Shear	~

Main Member Type	Douglas Fir-Larch 🗸
Main Member Thickness	2.5 in. 🗸
Main Member: Angle of Load to Grain	90
Side Member Type	Steel 🗸
Side Member Thickness	12 gage 🗸 🗸
Side Member: Angle of Load to Grain	0
Washer Thickness	0 in. 🗸
Nominal Diameter	3/8 in. 🗸
Length	2.5 in. 🗸
Load Duration Factor	C_D = 1.6
Wet Service Factor	C_M = 0.7 ♥
End Grain Factor	C_eg = 1.0 V
Temperature Factor	C_t = 1.0

Connection Yield Modes

Im	472 lbs.
Is	385 lbs.
II	215 lbs.
IIIm	264 lbs.
IIIs	152 lbs.
IV	200 lbs.

Adjusted ASD Capacity 152 lbs.

- Lag Screw bending yield strength of 45000 psi is assumed.
- The Adjusted ASD Capacity is only applicable for lag screws with adequate end distance, edge distance and spacing per NDS chapter 11.
- ASTM A36 Steel is assumed for steel side members 1/4 in. thick, and ASTM A653 Grade 33 Steel is assumed for steel side members less than 1/4 in. thick.

While every effort has been made to insure the accuracy of the information presented, and special effort has been made to assure that the information reflects the state-of-the-art, neither the American Wood Council nor its members assume any responsibility for any particular design prepared from this on-line Connection Calculator. Those using this on-line Connection Calculator assume all liability from its use.

The Connection Calculator was designed and created by Cameron Knudson, Michael Dodson and David Pollock at Washington State University. Support for development of the Connection Calculator was provided by <u>American Wood Council</u>.